• Title/Summary/Keyword: wind around buildings

검색결과 97건 처리시간 0.026초

Characteristics of Negative Peak Wind Pressure acting on Tall Buildings with Step on Wall Surface

  • Yoshida, Akihito;Masuyama, Yuka;Katsumura, Akira
    • 국제초고층학회논문집
    • /
    • 제8권4호
    • /
    • pp.283-290
    • /
    • 2019
  • Corner cut, corner chamfered or a building shape change are adopted in the design of tall buildings to achieve aerodynamic superiority as well as response reduction. Kikuchi et.al pointed out that large negative peak external pressures can appear near the inside corner of set-back low rise buildings. It is therefore necessary to pay attention to facade design around steps in building surfaces. Peak wind pressures for corner cut or corner chamfered configurations are given in the AIJ code. However, they cannot be applied where there are many variations of vertical and horizontal steps. There has been no previous systematic research on peak wind pressures around steps in building surfaces. In this study, detailed phenomenon of peak wind pressures around steps in buildings are investigated focusing on vertical and horizontal distances from the building's corner.

Reliability of numerical computation of pedestrian-level wind environment around a row of tall buildings

  • Lam, K.M.;To, A.P.
    • Wind and Structures
    • /
    • 제9권6호
    • /
    • pp.473-492
    • /
    • 2006
  • This paper presents numerical results of pedestrian-level wind environment around the base of a row of tall buildings by CFD. Four configurations of building arrangement are computed including a single square tall building. Computed results of pedestrian-level wind flow patterns and wind speeds are compared to previous wind tunnel measurement data to enable an assessment of CFD predictions. The CFD model uses the finite-volume method with RNG $k-{\varepsilon}$ model for turbulence closure. It is found that the numerical results can reproduce key features of pedestrian-level wind environment such as corner streams around corners of upwind building, sheltered zones behind buildings and channeled high-speed flow through a building gap. However, there are some differences between CFD results and wind tunnel data in the wind speed distribution and locations of highest wind speeds inside the corner streams. In locations of high ground-level wind speeds, CFD values match wind tunnel data within ${\pm}10%$.

Wind Environment Assessment around High-Rise Buildings through Wind Tunnel Test and Computational Fluid Dynamics

  • Min-Woo Park;Byung-Hee Nam;Ki-Pyo You;Jang-Youl You
    • 국제초고층학회논문집
    • /
    • 제11권4호
    • /
    • pp.321-329
    • /
    • 2022
  • High-rise buildings constructed adjacent to low-rise structures experience frequent damage caused by the associated strong wind. This study aimed to implement a standard evaluation of the wind environment and airflow characteristics around high-rise apartment blocks using wind tunnel tests (WTT) and computational fluid dynamics (CFD) simulations. The correlation coefficient between the CFD and wind tunnel results ranged between 0.6-0.8. Correlations below 0.8 were due to differences in the wake flow area range generated behind the target building according to wind direction angle and the effect of the surrounding buildings. In addition, a difference was observed between the average velocity ratio of the wake flow wind measured by the WTT and by the CFD analysis. The wind velocity values of the CFD analysis were therefore compensated, and, consequently, the correlations for most wind angles increased.

Optimization Calculations and Machine Learning Aimed at Reduction of Wind Forces Acting on Tall Buildings and Mitigation of Wind Environment

  • Tanaka, Hideyuki;Matsuoka, Yasutomo;Kawakami, Takuma;Azegami, Yasuhiko;Yamamoto, Masashi;Ohtake, Kazuo;Sone, Takayuki
    • 국제초고층학회논문집
    • /
    • 제8권4호
    • /
    • pp.291-302
    • /
    • 2019
  • We performed calculations combining optimization technologies and Computational Fluid Dynamics (CFD) aimed at reducing wind forces and mitigating wind environments (local strong winds) around buildings. However, the Reynolds Averaged Navier-stokes Simulation (RANS), which seems somewhat inaccurate, needs to be used to create a realistic CFD optimization tool. Therefore, in this study we explored the possibilities of optimizing calculations using RANS. We were able to demonstrate that building configurations advantageous to wind forces could be predicted even with RANS. We also demonstrated that building layouts was more effective than building configurations in mitigating local strong winds around tall buildings. Additionally, we used the Convolutional Neural Network (CNN) as an airflow prediction method alternative to CFD in order to increase the speed of optimization calculations, and validated its prediction accuracy.

풍자원 평가를 위한 건축물 주변의 유동특성 (Characteristic of Wind Flow around Building Structures for Wind Resource Assessment)

  • 조강표;정승환;신승화
    • 한국유체기계학회 논문집
    • /
    • 제14권3호
    • /
    • pp.50-58
    • /
    • 2011
  • To utilize wind resources effectively around buildings in urban area, the magnitudes of wind velocity and turbulence intensity are important, which means the need of the information about the relationship between the magnitude of wind velocity and that of fluctuating wind velocity. In the paper, wind-tunnel experiments were performed to provide the information about Characteristic of Wind flow around buildings with the spanwise distance and the side ratio of buildings as variables. For a single building with the side ratios of one and two, the average velocity ratio was 1.4 and the velocity standard deviation ratio ranged from 1.4 to 2.6 at the height of 0.02m at the corner of the windward side, in which flow separation occurred. For twin buildings with the side ratios of one and two, the velocity ratio ranged from 2 to 2.5 as the spanwise distance varied at the height of 0.02m, and the velocity standard deviation ratio varied near 1.25. For twin buildings with the side ratios of one and two, the maximum velocity ratio was 1.75 at the height of 0.6m, and the maximum velocity standard deviation ratio was 2.1. It was also found from the results of CFD analysis and wind-tunnel experiments that for twin buildings with the side ratios of one and two, the difference between the velocity ratio of CFD analysis and that of wind-tunnel experiments at streamwise distances was near 0.75.

A comparison of numerical simulations and full-scale measurements of snowdrifts around buildings

  • Thiis, Thomas K.
    • Wind and Structures
    • /
    • 제3권2호
    • /
    • pp.73-81
    • /
    • 2000
  • Snowdrifts around buildings can cause serious problems when formed on undesirable places. The formation of snowdrifts is highly connected to the wind pattern around the building, and the wind pattern is again dependent on the building design. The shear stress on the surface and snowdrifting around different buildings are investigated through CFD analysis and compared to measurements. The computations of shear stress shows local minima in the same areas as snowdrifts are formed. The snowdrifting computations utilises a drift-flux model where a fluid with snow properties is allowed to drift through a fluid with air properties. An apparent dynamic viscosity of the snow/air mixture is defined and used as a threshold criterion for snowdrifting. The results from the snowdrifting computations show increased snow density where snowdrifts are expected, and are in agreement with previous large-scale snowdrift measurements. The results show that computational fluid dynamics can be a tool for planning building design in snowdrifting areas.

Generalization of wind-induced interference effects for two buildings

  • Khanduri, Atul C.;Stathopoulos, Theodore;Bedard, Claude
    • Wind and Structures
    • /
    • 제3권4호
    • /
    • pp.255-266
    • /
    • 2000
  • Wind-induced interference effects on a building are the result of one or more adjacent buildings modifying the flow of wind around it, which may result in a significant increase or decrease in wind loads on the building. Wind loading standards and codes of practice offer little guidance to the designer for assessing the effects of interference. Experimental results on interference effects indicate that code recommendations may be significantly low (unsafe) or uneconomically conservative. The paper presents results of an extensive experimental program to study the wind flow mechanisms and to quantify the extent of wind load modifications on buildings due to interference effects. These results have been simplified and presented from the point-of-view of design and codification for the case of two buildings. Based on these results, general guidelines and limiting conditions defining wind interference are formulated and discussed.

Numerical Simulation of Flow and Dispersion Around Buildings using CFD Model

  • Ryu, Chan-Su
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제4권2호
    • /
    • pp.117-125
    • /
    • 2000
  • A series of simulations were carried out to test the accuracy of a CFD (Computational Fluid Dynamics) model for flow and dispersion problems around buildings. The basic equations involved are Reynolds-averaged Navier-Stokes equations. Two different cases were selected to estimate the accuracy of a CFD model. Case 1 adopted Euler equations, which are obtained by neglecting the viscous fluxes, which can be closed by the $textsc{k}$-$\varepsilon$model for a turbulent close problem. The results of both cases were compared with wind tunnel data. The results for Case 2 were closer to the wind both cases were compared with wind tunnel data. The results for Case 2 were closer to the wind tunnel data than Case 1. Accordingly, this indicates that the inclusion of viscous fluxes in a CFD model is required for the simulation of flow and 야spersion around buildings.

  • PDF

Three-dimensional numerical simulation of turbulent flow around two high-rise buildings in proximity

  • Liu, Min-Shan
    • Wind and Structures
    • /
    • 제1권3호
    • /
    • pp.271-284
    • /
    • 1998
  • This paper uses the numerical simulation to investigate the interference effect of 3-D turbulent flow around two high rise buildings in proximity at the different relative heights, gaps, and wind velocities. The computer program used to carry out the simulation is based on the control volume method and the SIMPLEST algorithm. The ${\kappa}-{\varepsilon}$ model was used to simulate turbulence effects. Since the contracted flow between two adjacent buildings enhances the strength of vortex shedding from the object building, the pressure coefficient on each side wall of the object building is generally increased by the presence of apposed building. The effect is increased as the relative height or the gap between the two buildings decreases. The velocity on the vertical center line between two buildings is about 1.4 to 1.5 times the upstream wind velocity.

공동주택에서의 소형풍력발전시스템 적용에 관한 연구 (A Study on the Application of Small Wind Power System in Apartment Housing)

  • 박진철;경남호
    • 한국태양에너지학회 논문집
    • /
    • 제23권2호
    • /
    • pp.21-34
    • /
    • 2003
  • This study aims to present the applicability of wind turbine generator system to urban buildings for the utilization of clean renewable energy. The results are as follows; According to the wind resource analysis, it has been found that small sized wind power system can be viable for buildings application due to the amplification of wind velocity around buildings or building clusters, in spite of low mean velocity of 2-3m/s in Seoul and Kyunggi urban areas. But planners must perform micrositing analysis around building so that wind turbine can be located at high velocity zones. The system must be designed to avoid obstacles preventing prevailing wind in buildings. It should be recognized that wind speeds are changing depending on the height and length from buildings. The wind power system can be used as a symbol of landmark which shows a sustainable architecture from the scenary Itself A case study for apartment building in urban showed that wind power systems can be applicable in two kinds of place, rooftops and ground levels. Especially, the wind power systems must be carefully positioned so that wind resources do not decrease when it is installed at ground levels. and according to life cycle cost analysis, adaption of new small win4 power systems to buildings were proved to produce a profit if it is considered the expense of environment improvement and the wind speed increasing according to rise of building height. This research will ultimately achieve green architecture that preserves nature and at the same time provides pleasant environment to humans, and will play a great role in establishing the environment-preserving sustainable architecture of the 21th century.