• 제목/요약/키워드: wiener process

검색결과 111건 처리시간 0.014초

비지역적 특징값과 서포트 벡터 머신 분류기를 이용한 위변조 지폐 판별 알고리즘 (Counterfeit Money Detection Algorithm using Non-Local Mean Value and Support Vector Machine Classifier)

  • 지상근;이해연
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권1호
    • /
    • pp.55-64
    • /
    • 2013
  • 디지털 고성능 영상장비의 대중화와 강력한 이미지 편집 소프트웨어의 출현으로 인해 고품질의 위 변조가 가능하게 되었다. 특히 화폐 위 변조 범죄가 급격히 증가하고 있지만, 일반인이 위 변조 지폐를 발견하는 비율은 낮은 수준이다. 본 논문에서는 범용 스캐너를 이용하여 위 변조 지폐를 판별할 수 있는 알고리즘을 제안한다. 본 알고리즘에서는 위 변조 지폐를 출력하는 과정에서 나타나는 인쇄물의 고유한 특징에 기반하여 위 변조 여부를 판별한다. 비지역적 평균 알고리즘을 이용하여 인쇄 과정에서 나타나는 노이즈 특성을 추출하고, 명암도 동시발생 행렬을 계산하여 지폐의 특징값을 추출하였다. 추출한 지폐의 고유한 특징값을 학습기반 데이터 분류기에 적용하여 위 변조 여부를 판별하였다. 제안한 알고리즘의 성능을 분석하기 위해 총 324장의 1만원권 지폐와 8대 프린터에서 출력한 위조지폐 이미지로 실험하였다. 또한 노이즈 추출에 있어 기존 프린터 판별 기술에서 사용되었던 위너필터와 이산웨이블릿변환 기반 알고리즘과 비교 분석을 수행하였다. 그 결과 제안한 알고리즘이 위 변조 판별에 있어서 94% 이상의 정확도를 보였으며, 위 변조 지폐 인쇄기기 식별에 있어서는 93% 이상의 정확도를 보여서 기존 프린터 판별 기술을 이용한 것보다 우수함을 보였다.