• Title/Summary/Keyword: width-to-thickness ratio

Search Result 461, Processing Time 0.025 seconds

Free-strain solutions for two-dimensional consolidation with sand blankets under multi-ramp loading

  • Zan Li;Songyu Liu;Cuiwei Fu
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.385-393
    • /
    • 2023
  • To analyze the consolidation with horizontal sand drains, the plane strain consolidation model under multi-ramp loading is established, and its corresponding analytical solution is derived by using the separation of variables method. The proposed solution is verified by the field measurement data and finite element results. Then, the effects of the loading mode and stress distribution on consolidation and dissipation of pore pressure are investigated. At the same time, the influence of hydraulic conductivity and thickness of sand blankets on soil consolidation are also analyzed. The results show that the loading mode has a significant effect on both the soil consolidation rate and generation-dissipation process of pore water pressure. In contrast, the influence of stress distribution on pore pressure dissipation is obvious, while its influence on soil consolidation rate is negligible. To guarantee the fully drained condition of the sand blanket, the ratio of hydraulic conductivity of the sand blanket to that of clay layer kd/kv should range from 1.0×104 to 1.0×106 with soil width varying from 100 m to 1000 m. A larger soil width correspondingly needs a greater value of kd/kv to make sure that the pore water can flow through the sand blanket smoothly with little resistance. When the soil width is relatively small (e.g., less than 100 m), the effect of thickness of the sand blanket on soil consolidation is insignificant. And its influence appears obvious gradually with the increase of the soil width.

Effect of Total Collimation Width on Relative Electron Density, Effective Atomic Number, and Stopping Power Ratio Acquired by Dual-Layer Dual-Energy Computed Tomography

  • Jung, Seongmoon;Kim, Bitbyeol;Yoon, Euntaek;Kim, Jung-in;Park, Jong Min;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.165-171
    • /
    • 2021
  • Purpose: This study aimed to evaluate the effect of collimator width on effective atomic number (EAN), relative electron density (RED), and stopping power ratio (SPR) measured by dual-layer dual-energy computed tomography (DL-DECT). Methods: CIRS electron density calibration phantoms with two different arrangements of material plugs were scanned by DL-DECT with two different collimator widths. The first phantom included two dense bone plugs, while the second excluded dense bone plugs. The collimator widths selected were 64 mm×0.625 mm for wider collimators and 16 mm×0.625 mm for narrow collimators. The scanning parameters were 120 kVp, 0.33 second gantry rotation, 3 mm slice thickness, B reconstruction filter, and spectral level 4. An image analysis portal system provided by a computed tomography (CT) manufacturer was used to derive the EAN and RED of the phantoms from the combination of low energy and high energy CT images. The EAN and RED were compared between the images scanned using the two different collimation widths. Results: The CT images with the wider collimation width generated more severe artifacts, particularly with high-density material (i.e., dense bone). RED and EAN for tissues (excluding lung and bones) with the wider collimation width showed significant relative differences compared to the theoretical value (4.5% for RED and 20.6% for EAN), while those with the narrow collimation width were closer to the theoretical value of each material (2.2% for EAN and 2.3% for RED). Scanning with narrow collimation width increased the accuracy of SPR estimation even with high-density bone plugs in the phantom. Conclusions: The effect of CT collimation width on EAN, RED, and SPR measured by DL-DECT was evaluated. In order to improve the accuracy of the measured EAN, RED, and SPR by DL-DECT, CT scanning should be performed using narrow collimation widths.

Potential use of waste rubber shreds in drainage layer of landfills - An experimental study

  • Praveen, V.;Sunil, B.M.
    • Advances in environmental research
    • /
    • v.5 no.3
    • /
    • pp.201-211
    • /
    • 2016
  • Laboratory tests were conducted to evaluate the performance of waste rubber shreds in leachate collection layer of engineered landfills. The study found that waste rubber shreds layer in combination with a gravel layer can be of potential use in landfill drainage system. To study the performance, conventional gravel along with waste rubber shreds were used in different combinations (with total layer thickness = 500 mm) as leachate collection media. For the laboratory study poly vinyl chloride (PVC) pipes were used. The size range of waste rubber shreds used were 25 mm to 75 mm in length and width = 10 to 20 mm. The gravel size used in the leachate collection media is 10 mm to 20 mm size. Performance study of 7 Test Cols. with different combinations of waste rubber shreds and gravel bed thickness were studied to find out the best combination. The study found that the Test Col.-3 having waste rubber shreds thickness = 200 mm and gravel layer thickness = 300 mm gave the best results in terms of percentage removal in various physicochemical parameters present in the leachate. Further to find the best size rubber shreds three more Test Cols - 8, 9 and 10 were constructed having the rubber shreds and gravel layer ratio same as that of Test Col.-3 but having rubber shreds width = 10 mm, 15 mm and 20 mm respectively. Based on the results obtained using Test Cols. 8, 9 and 10 the study found that smaller size rubber shreds gave bests results in terms of improvement in various leachate parameters.

Local Buckling of Built-up Square Tubular Compression Members Fabricated with HSA800 High Performance Steels under Concentric Axial Loading (중심압축력을 받는 건축구조용 고성능강(HSA800) 용접 각형강관 압축재의 국부좌굴)

  • Yoo, Jung-Han;Kim, Joo-Woo;Yang, Jae-Keun;Kang, Joo-Won;Lee, Dong-Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.435-442
    • /
    • 2012
  • Recently, high performance(strength) steels have been utilized to structural materials in buildings and bridges with the demand for high-rise and long-span of main structures. This paper is a series of basic study for the design specification of structural members using high performance steel, material properties of high performance rolled steel building structures. HSA800 was compared with the requirements of Korean Standards(KS) for HSA800. Welded square tube stub columns with variables of width-to-thickness ratios are planned in order to investigate the local buckling behaviors and check the current design limit of width-to-thickness ratio and uniaxial compressive tests are carried out. In addition, the local buckling behaviors of stub columns obtained finite element analysis were compared with those of test results.

A Study on Compressive Strength of Built-up H Shaped Columns Fabricated with HSA800 High Performance Steels (건축구조용 고성능강(HSA800) 용접 H형단면 기둥의 압축강도에 관한 연구)

  • Kim, Tae Soo;Lee, Myung Jae;Oh, Young Suk;Lee, Kang Min;Kim, Do Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.627-636
    • /
    • 2012
  • Recently, high performance(strength) steels have been utilized to structural materials in buildings and bridges with the demand for high-rise and long-span of main structures. This paper is a series of basic study for the design specification of structural members using high performance steel, material properties of high performance rolled steel building structures; material properties of HSA800 steel was compared with the requirements of Korean Standards(KS) for HSA800. Welded H-shape stub columns with variables of width-to-thickness ratios are planned in order to investigate the local buckling behaviors and check the current design limit of width-to-thickness ratio and uniaxial compressive tests are carried out. In addition, the buckling behaviors of stub columns obtained finite element analysis were compared with those of test results.

Organic-layer thickness dependent optical properties of top emission organic light-eitting diodes (전면 유기 발광 소자의 유기물층 두께 변화에 따른 광학적 특성)

  • An, Hui-Chul;Joo, Hyun-Woo;Na, Su-Hwan;Kim, Tae-Wan;Hong, Jin-Woong;Oh, Yong-Cheul;Song, Min-Joung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.413-414
    • /
    • 2008
  • We have studied an organic layer thickness dependent optical properties and microcavity effects for top-emission organic light-emitting diodes. Manufactured top emission device, structure is Al(100nm)ITPD(xnm)/$Alq_3$(ynm)/LiF(0.5nm)/Al(23nm). While a thickness of hole-transport layer of TPD was varied from 35 to 65nm, an emissive layer thickness of $Alq_3$ was varied from 50 to 100nm for two devices. A ratio of those two layers was kept to about 2:3. Variation of the layer thickness changes a traverse time of injected carriers across the organic layer, so that it may affect on the chance of probability of exciton formation. View-angle dependent emission spectra were measured for the optical measurements. Top-emission devices show that the emission peak wavelength shifts to longer wavelength as the organic layer thickness increases. For instance, it shifts from 490 to 555nm in the thickness range that we used. View-angle dependent emission spectra show that the emission intensity decreases as the view-angle increases. The organic layer thickness-dependent emission spectra show that the full width at half maximum decreases as the organic layer thickness increases. Top emission devices show that the full width at half maximum changes from 90 to 35nm as the organic layer thickness increases. In top-emission device, the microcavity effect is more vivid as the organic layer thickness increases.

  • PDF

Evaluation on Applicability of Built-up Square Tubular Compression Members Fabricated with HSA800 High Performance Steel Considering Local Buckling (국부좌굴을 고려한 건축구조용 고성능강(HSA800) 조립각형강관 압축재의 적용성 평가)

  • Yoo, Jung Han;Kim, Joo Woo;Yang, Jae Guen;Kang, Joo Won;Lee, Dong Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.3
    • /
    • pp.223-231
    • /
    • 2013
  • Recently, high-performance steels have been increasingly used for structural materials in buildings and bridges with the demand for high-rise and long-span of main structures. This paper offers a series of basic study for the design specification of structural members using high performance steel, that is material properties of HSA800 (High-performance rolled steel for building structures). Built-up square tube stub columns with variables of width-to-thickness ratios are planned as a parametric study in order to investigate the local buckling behaviors and check the current design limit of width-to-thickness ratio. In addition, the buckling behaviors of stub columns obtained finite element (FE) analysis were compared with those from experimental tests. The verified FE model was used for parametric study and checked applicability of high-strength steel on current design specification.

Analytical and numerical investigation of the cyclic behavior of angled U-shape damper

  • Kambiz Cheraghi;Mehrzad TahamouliRoudsari
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.325-335
    • /
    • 2024
  • Yielding dampers exhibit varying cyclic behavior based on their geometry. These dampers not only increase the energy dissipation of the structure but also increase the strength and stiffness of the structure. In this study, parametric investigations were carried out to explore the impact of angled U-shape damper (AUSD) dimensions on its cyclic behavior. Initially, the numerical model was calibrated using the experimental specimen. Subsequently, analytical equations were presented to calculate the yield strength and elastic stiffness, which agreed with the experimental results. The outcomes of the parametric studies encompassed ultimate strength, effective stiffness, energy dissipation, and equivalent viscous damper ratio (EVDR). These output parameters were compared with similar dampers. Also, the magnitude of the effect of damper dimensions on the results was investigated. The results of parametric studies showed that the yield strength is independent of the damper width. The length and thickness of the damper have the greatest effect on the elastic stiffness. Reducing length and width resulted in increased energy dissipation, effective stiffness, and ultimate strength. Damper width had a more significant effect on EVDR than its length. On average, every 5 mm increase in damper thickness resulted in a 3.6 times increase in energy dissipation, 3 times the effective stiffness, and 3 times the ultimate strength of the model. Every 15 mm reduction in damper width and length increased energy dissipation by 14% and 24%, respectively.

Bending behavior of SWCNT reinforced composite plates

  • Chavan, Shivaji G.;Lal, Achchhe
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.537-548
    • /
    • 2017
  • In this paper presents bending characteristic of single wall carbon nanotube reinforced functionally graded composite (SWCNTRC-FG) plates. The finite element implementation of bending analysis of laminated composite plate via well-established higher order shear deformation theory (HSDT). A seven degree of freedom and $C^0$ continuity finite element model using eight noded isoperimetric elements is developed for precise computation of deflection and stresses of SWCNTRC plate subjected to sinusoidal transverse load. The finite element implementation is carried out through a finite element code developed in MATLAB. The results obtained by present approach are compared with the results available in the literatures. The effective material properties of the laminated SWCNTRC plate are used by Mori-Tanaka method. Numerical results have been obtained with different parameters, width-to-thickness ratio (a/h), stress distribution profile along thickness direction, different SWCNTRC-FG plate, boundary condition, through the thickness (z/h) ratio, volume fraction of SWCNT.

Design and Analysis of Direct-Coupled, Small-Scaled Permanent Magnet Generator for Wind Power Application (풍력발전을 위한 소용량 영구자석형 동기발전기의 설계 및 해석)

  • Kim, Il-Jung;Choi, Jang-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.39-51
    • /
    • 2014
  • This paper deals with design of a direct-coupled, small-scaled permanent magnet generator (PMG) for wind power application. First, this paper determines rated power and speed of the PMG from measured characteristics of wind turbines. Second, we derive analytical solutions for the open-circuit field in order to determine optimum magnet thickness and pole pitch/arc ratio. Third, on the basis of open circuit field solutions, stator magnetic circuit including slot opening, teeth width and yoke thickness is designed. And then, a diameter of stator coil which agree with a required current density is calculated, and its turns are determined from the area of slot considering winding packing factor. Finally, finite element (FE) method is employed in analyzing the details of the designed PMG and, test results such as back-emf measurements are given to confirm the design.