• 제목/요약/키워드: width(diameter)-thickness ratio

검색결과 31건 처리시간 0.027초

Mechanical characteristics of hollow shear connectors under direct shear force

  • Uenaka, Kojiro;Higashiyama, Hiroshi
    • Steel and Composite Structures
    • /
    • 제18권2호
    • /
    • pp.467-480
    • /
    • 2015
  • The steel-concrete composite decks have high fatigue durability and deformability in comparison with ordinary RC slabs. Withal, the steel-concrete composite deck is mostly heavier than the RC slabs. We have proposed herein a new type of steel-concrete composite deck which is lighter than the typical steel-concrete composite decks. This can be achieved by arranging hollow sectional members as shear connectors, namely, half-pipe or channel shear connectors. The present study aims to experimentally investigate mechanical characteristics of the half-pipe shear connectors under the direct shear force. The shear bond capacity and deformability of the half-pipe shear connectors are strongly affected by the thickness-to-diameter ratio. Additionally, the shear strengths of the hollow shear connectors (i.e. the half-pipe and the channel shear connectors) are compared. Furthermore, shear capacities of the hollow shear connectors equivalent to headed stud connectors are also discussed.

풍력발전을 위한 소용량 영구자석형 동기발전기의 설계 및 해석 (Design and Analysis of Direct-Coupled, Small-Scaled Permanent Magnet Generator for Wind Power Application)

  • 김일중;최장영
    • 조명전기설비학회논문지
    • /
    • 제28권5호
    • /
    • pp.39-51
    • /
    • 2014
  • This paper deals with design of a direct-coupled, small-scaled permanent magnet generator (PMG) for wind power application. First, this paper determines rated power and speed of the PMG from measured characteristics of wind turbines. Second, we derive analytical solutions for the open-circuit field in order to determine optimum magnet thickness and pole pitch/arc ratio. Third, on the basis of open circuit field solutions, stator magnetic circuit including slot opening, teeth width and yoke thickness is designed. And then, a diameter of stator coil which agree with a required current density is calculated, and its turns are determined from the area of slot considering winding packing factor. Finally, finite element (FE) method is employed in analyzing the details of the designed PMG and, test results such as back-emf measurements are given to confirm the design.

Experimental study on reinforced concrete filled circular steel tubular columns

  • Hua, Wei;Wang, Hai-Jun;Hasegawa, Akira
    • Steel and Composite Structures
    • /
    • 제17권4호
    • /
    • pp.517-533
    • /
    • 2014
  • Experimental results of 39 specimens including concrete columns, RC columns, hollow steel tube columns, concrete filled steel tubular (CFT) columns, and reinforced concrete filled steel tubular (RCFT) columns are presented. Based on the experimental results, the load-carrying capacity, confined effect, ductility, and failure mode of test columns are investigated. The effects of the main factors such as width-thickness ratio (the ratio of external diameter and wall thickness for steel tubes), concrete strength, steel tube with or without rib, and arrangement of reinforcing bars on the mechanical characteristics of columns are discussed as well. The differences between CFT and RCFT are compared. As a result, it is thought that strength, rigidity and ductility of RCFT are improved; especially strength and ductility are improved after the peak of load-displacement curve.

Cutting Technique for Biodegradable Rope using a CW CO2 Laser with TEM00 mode

  • Lee, Dong-Gil;Kim, Seong-Hun;Park, Seong-Wook;Yang, Yong-Su;Xu, Guo-Cheng
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.576-581
    • /
    • 2012
  • A 23 W continuous wavelength $CO_2$ laser system exited by a high-frequency LCC resonant converter is adapted to cut a biodegradable rope fabricated with polybutylene succinate. As the biodegradable rope consists of three twisted strands, the thickness changes relative to the position of the laser beam and we thus propose a method to determine exact cutting depth. In order to obtain the parameters related to the rope cutting, the experimental and theoretical cutting depths are compared and analyzed for a range of laser heat sources. The melted thickness and groove width of the cut biodegradable rope are also examined. The proposed theoretical cutting depth depends on the incident power and target velocity ratio. From these experimental results, the biodegradable rope with a diameter of 22 mm can be cut with a heat source of 50 J/cm resulting in a melted thickness of 1.96 mm and a groove width of 0.65 mm. The laser system is shown to be perfect tool for the processing of biodegradable rope without the occurrence of raveling.

스테인리스강관과 일반구조용강관 단주내력 비교에 관한 연구 (A Comparison Study on Strength of Stainless Steel Tube and Steel Tube Stub-columns)

  • 장호주;유재희;양영성
    • 한국강구조학회 논문집
    • /
    • 제15권5호통권66호
    • /
    • pp.561-570
    • /
    • 2003
  • 본 논문은 스테인리스강관과 일반구조용강관의 비교를 통한 스테인리스 강관의 건축구조용 강재로서 적용성 검토를 위해, 폭(지름)-두께비, 단면형상을 주요 변수로 한 소재의 인장강도실험과 단주의 압축강도실험을 실시하여 소재의 기계적 성질과 단주의 강도 및 거동을 파악한다. 실험결과, 스테인리스강관은일반구조용 강관에 비해 인장내력, 항복비, 연신율, 에너지흡수능력 등이 월등히 우수한 것으로 나타났다. 항복내력 또한 KS규격 항복강도 $2.1tf/cm^2$ 나 일본 스테인리스설계기준강도 $2.4tf/cm^2$ 을 충분히 만족한 값으로 일반구조용 강판보다 더 높은 값을 보였다. 스테인리스 각형강관은 일반구조용 각형강관에 비해 폭-두께비의 제한값을 초과하는 경우에도 국부좌굴에 의한 급격한 내력저하 없이 연성적인 거동을 보이나 소성가공에 의한 영향은 폭-두께비가 증가하면서 더 많이 받는 것으로 나타났으며, 스테인리스 원형강관은 일반구조용 원형강관보다 지름-두께비가 증가함에 따라 국부좌굴과 소성가공의 영향을 더 적게 받는 것으로 나타났다. 소성변형능력 또한 일반구조용 강관에 비해 스테인리스 강관이 우수하게 나타났다.

덕트 종횡비가 회전덕트 내 압력강하에 미치는 영향 (Effect of Duct Aspect Ratios on Pressure Drop in a Rotating Two-Pass Duct)

  • 김경민;이동현;조형희
    • 대한기계학회논문집B
    • /
    • 제30권6호
    • /
    • pp.505-513
    • /
    • 2006
  • The pressure drop characteristics in a rotating two-pass duct with rib turbulators are investigated in the present study. Three ducts of different aspect ratios (W/H=0.5, 1.0 and 2.0) are employed with a fixed hydraulic diameter ($D_h$) of 26.7 mm. $90^{\circ}$-rib turbulators with $1.5mm{\times}1.5mm$ cross-section are attached on the leading and trailing surfaces. The pitch-to-rib height ratio (p/e) is 1.0. The distance between the tip of the divider and the outer wall of the duct is 1.0 W. The thickness of divider wall is 6.0 mm o. 0.225 $D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000 and the .elation number (Ro) is varied from 0.0 to 0.2. As duct aspect ratio increases, high friction factor ratios show in overall regions. The reason is that the rib height-to-duct height ratio (e/H) increases, but the divider wall thickness-to-duct width ($t_d/W$) decreases. The rotation of duct produces pressure drop discrepancy between the leading and trailing surfaces. However, the pressure drop discrepancy of the high duct aspect ratio (AR=2.0) is smaller than that of the low duct aspect ratio (AR=0.5) due to the decrement of duct hight (H).

나노 X-선 쉐도우 마스크를 이용한 고폭비의 나노 구조물 제작 (A Novel Fabrication Method of the High-Aspect-Ratio Nano Structure (HAR-Nano Structure) Using a Nano X-Ray Shadow Mask)

  • 김종현;이승섭;김용철
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1314-1319
    • /
    • 2006
  • This paper describes the novel fabrication method of the high-aspect-ratio nano structure which is impossible by conventional method using a shadow mask and a Deep X-ray Lithography (DXRL). The shadow mask with $1{\mu}m-sized$ apertures is fabricated on the silicon membrane using a conventional UV-lithography. The size of aperture is reduced to 200nm by accumulated low stress silicon nitride using a LPCVD (low pressure chemical vapor deposition) process. The X-ray mask is fabricated by depositing absorber layer (Au, $3{\mu}m$) on the back side of nano shadow mask. The thickness of an absorber layer must deposit dozens micrometers to obtain contrast more than 100 for a conventional DXRL process. The thickness of $3{\mu}m-absorber$ layer can get sufficient contrast using a central beam stop method, blocking high energy X-rays. The nano circle and nano line, 200nm in diameter in width, respectively, were demonstrated 700nm in height with a negative photoresist of SU-8.

OPERATION OF TILTING 5-PADS proceeding BEARING AT DIFFERENT GEOMETRIC PARAMETERS OF PADS

  • Strzelecki, S.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.99-100
    • /
    • 2002
  • Radial, tilting-pad proceeding bearings are applied in high speed rotating machines operating at stable small and mean loads and the peripheral speeds of proceeding reaching 150 m/s. The operation of bearing can be determined by static characteristics including the oil film pressure, temperature and viscosity distributions, minimum oil film thickness, load capacity, power loss, oil flow. The operation of 5-lobe tilted-pad proceeding bearing has been introduced at the assumption of adiabatic oil film. The oil film pressure, temperature and viscosity distributions habe received by iterative solution of the Reynolds', energy and viscosity equations. The resulting oil film force, minimum oil film thickness, power loss. oil flow, maximum oil film pressure, maximum temperature were computed for different sets of bearing geometric parameters as: bearing length to diameter ratio, pad angular length and width as well as pad relative clearance.

  • PDF

Behavior of reinforced sustainable concrete hollow-core slabs

  • Al-Azzawi, Adel A.;Shallal, Mustafa S.
    • Advances in concrete construction
    • /
    • 제11권4호
    • /
    • pp.271-284
    • /
    • 2021
  • This study aims to trace the response of twelve one-way sustainable concrete hollow-core slabs made by reducing cement content and using replacement of coarse aggregate by plastic aggregate. The trial mixes comprise the 25, 50, 75, and 100% replacement of natural coarse aggregate. The compressive strength of the resulting lightweight concrete with full replacement of coarse aggregate by plastic aggregate was 28 MPa. These slabs are considered to have a reduced dead weight due to using lightweight aggregate and due to reducing cross-section through using voids. The samples are tested under two verticals line loads. Several parameters are varied in this study such as; nature of coarse aggregate (natural or recycled), slab line load location, the shape of the core, core diameter, flexural reinforcement ratio, and thickness of the slab. Strain gauges are used in the present study to measure the strain of steel in each slab. The test samples were fourteen one-way reinforced concrete slabs. The slab's dimensions are (1000 mm), (600 mm), (200 mm), (length, width, and thickness). The change in the shape of the core from circular to square and the use of (100 mm) side length led to reducing the weight by about (46%). The cracking and ultimate strength is reduced by about (5%-6%) respectively. With similar values of deflection. The mode of failure will remain flexural. It is recognized that when the thickness of the slab changed from (200 mm to 175 mm) the result shows a reduction in cracking and ultimate strength by about (6% and 7%) respectively.

생물학적 DNA 구조와 트러스구조의 융합으로 개발한 바람개비형 모델 선행연구 (Preliminary Development of Pinwheel Model Created by Convergent Truss Structure with Biological DNA Structure)

  • 최정호
    • 한국융합학회논문지
    • /
    • 제7권4호
    • /
    • pp.181-190
    • /
    • 2016
  • The objective of this study is to find the effective stiffness and compressive strengths of a unit-cell pinwheel truss and double pinwheel truss model designed following a double helical geometry similar to that of the DNA (deoxyribonucleic acid) structure in biology. The ideal solution for their derived relative density is correlated with a ratio of the truss thickness and length. To validate the relative stiffness or relative strength, ABAQUS software is used for the computational model analysis on five models having a different size of truss diameter from 1mm to 5mm. Applied material properties are stainless steel type 304. The boundary conditions applied were fixed bottom and 5 mm downward displacement. It was assumed that the width, length, and height are all equal. Consequently, it is found that the truss model has a lower effective stiffness and a lower effective yielding strength.