• Title/Summary/Keyword: wideband speech

Search Result 57, Processing Time 0.026 seconds

Implementation of Wideband Waveform Interpolation Coder for TTS DB Compression (TTS DB 압축을 위한 광대역 파형보간 부호기 구현)

  • Yang, Hee-Sik;Hahn, Min-Soo
    • MALSORI
    • /
    • v.55
    • /
    • pp.143-158
    • /
    • 2005
  • The adequate compression algorithm is essential to achieve high quality embedded TTS system. in this paper, we Propose waveform interpolation coder for TTS corpus compression after many speech coder investigation. Unlike speech coders in communication system, compression rate and anality are more important factors in TTS DB compression than other performance criteria. Thus we select waveform interpolation algorithm because it provides good speech quality under high compression rate at the cost of complexity. The implemented coder has bit rate 6kbps with quality degradation 0.47. The performance indicates that the waveform interpolation is adequate for TTS DB compression with some further study.

  • PDF

Efficient TTS Database Compression Based on AMR-WB Speech Coder (AMR-WB 음성 부호화기를 이용한 TTS 데이터베이스의 효율적인 압축 기법)

  • Lim, jong-Wook;Kim, Ki-Chul;Kim, Kyeong-Sun;Lee, Hang-Seop;Park, Hae-Young;Kim, Moo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.290-297
    • /
    • 2009
  • This paper presents an improved adaptive multi-rate wideband (AMR-WB) algorithm for the efficient Text-To-Speech (TTS) database compression. The proposed algorithm includes unnecessary common bit-stream (CBS) removal and parameter delta coding combined with speaker-dependent huffman coding to reduce the required bit-rate without any quality degradation. We also propose lossy coding schemes to produce the maximum bit-rate reduction with negligible quality degradation. The proposed lossless algorithm including CBS removal can reduce bit-rate by 12.40% without quality degradation compared with the 12.65 kbps AMR-WB mode. The proposed lossy algorithm can reduce bit-rate by 20.00% with 0.12 PESQ degradation.

Modified Generic Mode Coding Scheme for Enhanced Sound Quality of G.718 SWB (G.718 초광대역 코덱의 음질 향상을 위한 개선된 Generic Mode Coding 방법)

  • Cho, Keun-Seok;Jeong, Sang-Bae
    • Phonetics and Speech Sciences
    • /
    • v.4 no.3
    • /
    • pp.119-125
    • /
    • 2012
  • This paper describes a new algorithm for encoding spectral shape and envelope in the generic mode of G.718 super-wide band (SWB). In the G.718 SWB coder, generic mode coding and sinusoidal enhancement are used for the quantization of modified discrete cosine transform (MDCT)-based parameters in the high frequency band. In the generic mode, the high frequency band is divided into sub-bands and for every sub-band the most similar match with the selected similarity criteria is searched from the coded and envelope normalized wideband content. In order to improve the quantization scheme in high frequency region of speech/audio signals, the modified generic mode by the improvement of the generic mode in G.718 SWB is proposed. In the proposed generic mode, perceptual vector quantization of spectral envelopes and the resolution increase for spectral copy are used. The performance of the proposed algorithm is evaluated in terms of objective quality. Experimental results show that the proposed algorithm increases the quality of sounds significantly.

Digital Speech Coding Technologies for Wire and Wireless Communication (유무선망에서 사용되는 디지털 음성 부호화 기술 동향)

  • Yoon, Byungsik;Choi, Songin;Kang, Sangwon
    • Journal of Broadcast Engineering
    • /
    • v.10 no.3
    • /
    • pp.261-269
    • /
    • 2005
  • Throughout the history of digital communication, the digital speech coder is used as speech compression tool. Nowadays, the speech coder has been rapidly developed in the area of mobile communication system to overcome severe channel error and limitation of radio frequency resources. Due to the development of high performance communication system, high quality of speech coder is needed. This kind of speech coder can be used not only in communication services but also in digital multimedia services. In this paper, we describe the technologies of digital speech coder which are used in wire and wireless communication. We also present a summary of recent speech coding standards for narrowband and wideband applications. Finally we introduce the technical trends of next generation speech coder.

Artificial speech bandwidth extension technique based on opus codec using deep belief network (심층 신뢰 신경망을 이용한 오푸스 코덱 기반 인공 음성 대역 확장 기술)

  • Choi, Yoonsang;Li, Yaxing;Kang, Sangwon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.70-77
    • /
    • 2017
  • Bandwidth extension is a technique to improve speech quality, intelligibility and naturalness, extending from the 300 ~ 3,400 Hz narrowband speech to the 50 ~ 7,000 Hz wideband speech. In this paper, an Artificial Bandwidth Extension (ABE) module embedded in the Opus audio decoder is designed using the information of narrowband speech to reduce the computational complexity of LPC (Linear Prediction Coding) and LSF (Line Spectral Frequencies) analysis and the algorithm delay of the ABE module. We proposed a spectral envelope extension method using DBN (Deep Belief Network), one of deep learning techniques, and the proposed scheme produces better extended spectrum than the traditional codebook mapping method.

Multi Rate Wideband Speech Coder with the AMR Speech Coder and MLT-VQ (AMR부호화기와 MLT-VQ방법을 이용한 다전송률 광대역 음성부호화기)

  • 김은주;이인성
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.809-812
    • /
    • 2001
  • 본 논문에서는 AMR(Adaptive Multi-Rate)과 MLT (Modulated Lapped Transform) 벡터 양자화 방법을 이용하여 광대역 음성부호화기를 설계하였다. 제안한 음성부호화 알고리즘은 split-band 구조를 가지고 있으며 16kHz로 샘플링 된 신호를 입력받아 QMF 필터에 의해 두 개의 대역으로 나누어, 각각 8kHz 샘플링 신호로 변환시킨 후 저대역(0Hz-3400Hz)의 신호와 고대역(3400Hz -7000Hz)의 신호로 나누어 각각 부호화한다. 나누어진 두 개의 협대역 음성신호는 AMR(Adaptive Multi-Rate)부호화기와 MLT (Modulated Lapped Transform)벡터 양자화 방법을 사용하여 각각 부호화되어 전송된다. 수신단에서는 각 대역을 AMR과 IMLT(Inverse MLT) 벡터 양자화 방법으로 역부호화하여 음성신호를 합성한다. 제안한 음성부호화기는 20.2kbps에서 12.15kbps까지의 다전송률로 동작된다. 설계된 광대역 음성부호화기는 MOS시험 결과로부터 G.722의 56 kbps 음성이 설계된 코더의 20.2 kbps와 비슷한 음질을 갖음을 확인할 수 있었다.

  • PDF

The Implementation of Smartphone Application servicing HD(High Definition)-Voice (HD 음성 서비스를 제공하는 스마트폰 어플리케이션의 구현)

  • Choi, Seung-Han;Kim, Do-Young;Seo, Chang-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.4
    • /
    • pp.609-615
    • /
    • 2013
  • This paper represents the development of the HD-Voice application with G.711.1 coder-the latest wideband codec standard from ITU-T-for smartphone based on android platform. The work also includes the structure of the HD-voice application and the result of speech quality of HD-Voice application with G.711.1 coder. The paper shows that the speech quality of HD-Voice application with G.711.1 coder is excellent.

Real-time Implementation or AMR-WB Speech Coder Using TMS320C5509 DSP (TMS320C5509 DSP를 이용한 AMR-WB 음성부호화기의 실시간 구현)

  • Choi Song-ln;Jee Deock-Gu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.52-57
    • /
    • 2005
  • The adaptive multirate wideband (AMR-WB) speech coder has an extended audio bandwidth from 50 Hz to 7 kBz and operates on nine speech coding bit-rates from 6.6 to 23.85 kbit/s. In this Paper, we present the real-time implementation of AMR-WB speech coder using 16bit fixed-point TMS320C5509 that has dual MAC units. Firstly, We implemented AMR-WB speech coder in C 1anguage level using intrinsics, and then performed optimization in assembly language. The computational complexity of the implemented AMR-WB coder at 23.85 kbit/s is 42.9 Mclocks. And this coder needs the program memory of 15.1 kwords, data ROM of 9.2 kwords and data RAM of 13.9 kwords.

Real-Time Implementation of Wideband Adaptive Multi Rate (AMR-WB) Speech Codec Using TMS32OC6201 (TMS320C6201을 이용한 적응 다중 전송율을 갖는 광대역 음성부호화기의 실시간 구현)

  • Lee, Seung-Won;Bae, Keun-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9C
    • /
    • pp.1337-1344
    • /
    • 2004
  • This paper deals with analysis and real-time Implementation of a wide band adaptive multirate speech codec (AMR-WB) using a fixed-point DSP of TI's TMS320C6201. In the AMR-WB codec, input speech is divided into two frequency bands, lower and upper bands, and processed independently. The lower band signal is encoded based on the ACELP algorithm and the upper band signal is processed using the random excitation with a linear prediction synthesis filter. The implemented AMR-WB system used 218 kbytes of program memory and 92 kbytes of data memory. And its proper operation was confirmed by comparing a decoded speech signal sample-by-sample with that of PC-based simulation. Maximum required time of 5 75 ms for processing a frame of 20 ms of speech validates real-time operation of the Implemented system.