• Title/Summary/Keyword: whole-genome multi-locus sequence typing

Search Result 2, Processing Time 0.023 seconds

Comparative Analysis of Salmonella enterica subsp. enterica Serovar Thompson Isolates associated with Outbreaks Using PFGE and wgMLST

  • Youngho Koh;Yunyoung Bae;Min-Jung Lee;Yu-Si Lee;Dong-Hyun Kang;Soon Han Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1605-1614
    • /
    • 2022
  • The strains associated with foodborne Salmonella enterica Thompson outbreaks in Korea have not been identified. Therefore, we characterized S. Thompson strains isolated from chocolate cakes linked to foodborne outbreaks in Korea. A total of 56 strains were isolated from preserved cake products, products in the supply chain distribution, the manufacturer's apparatus, and egg white liquid products used for cream preparation. Subsequently, serological typing, pathogenic gene-targeted polymerase chain reaction (PCR), pulsed-field gel electrophoresis (PFGE), and whole-genome multi-locus sequence typing (wgMLST) were performed to characterize these isolates. The antigen formula of all isolates was 7:k:1,5, namely Salmonella enterica subsp. enterica Serovar Thompson. All 56 isolates harbored invA, his, hin, and stn, and were negative for sefA and spvC based on gene-targeted PCR analyses. Based on PFGE results, these isolates were classified into one group based on the same SP6X01.011 pattern with 100% similarity. We selected 19 strains based on the region and sample type, which were subjected to wgMLST. Although the examined strains showed 100% similarity, they were classified into seven clusters based on allelic differences. According to our findings, the cause of these outbreaks was chocolate cake manufactured with egg white liquid contaminated with the same Salmonella Thompson. Additionally, comparative analysis of wgMLST on domestic isolates of S. Thompson from the three outbreaks showed genetic similarities of over 99.6%. Based on the results, the PFGE and wgMLST combination can provide highly resolved phylogeny and reliable evidence during Salmonella outbreak investigations.

Whole-Genome Sequencing-based Antimicrobial Resistance and Genetic Profile Analysis of Vibrio parahaemolyticus Isolated from Seafood in Korea (유통 수산물에서 분리한 Vibrio parahaemolyticus의 항생제 내성 및 전장 유전체 분석을 통한 유전적 특성 분석)

  • Gyeong Gyu Song;Hyeonwoo Cho;Yeona Kim;Beomsoon Jang;Miru Lee;Kun Taek Park
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.3
    • /
    • pp.231-238
    • /
    • 2024
  • Vibrio parahaemolyticus is a major seafood-borne pathogen commonly detected in marine environments. In Korea, V. parahaemolyticus-induced foodborne illnesses account for 7.5% of bacterial pathogen-related food poisonings. Moreover, the amount of antimicrobial agents used in aquatic cultures is continuously increasing. In this study, we isolated V. parahaemolyticus from seafood samples and performed antimicrobial susceptibility tests using the microbroth dilution method. Furthermore, using whole-genome sequencing, we identified antimicrobial resistance genes, virulence genes, and sequence types (STs). We could isolate V. parahaemolyticus from 47 (59.5%) of the 79 seafood samples we purchased from retail markets in Seoul and Chungcheong provinces. Antimicrobial susceptibility tests revealed that 2 and all of the 47 isolates were ampicillin-resistant (4.3%) and susceptible to all tested antimicrobial agents (100%), respectively. The genotype analysis revealed that all isolates carried beta-lactam-, tetracycline-, and chloramphenicol-associated antimicrobial resistance genes. However, we could detect fosfomycin resistance only in one isolate. Concerning the virulence genes, we detected T3SS1 and T3SS2-associated genes in all and one isolate, respectively. However, we could not detect the tdh and trh genes. Of the 47 isolates, 17 belonged to 15 different STs, including ST 658 with 3 isolates. The rest 30 isolates were identified as 25 new STs. The results of this study support the need for operating a continuous monitoring system to prevent foodborne illnesses and the spread of antimicrobial resistance genes in V. parahaemolyticus.