• Title/Summary/Keyword: whole-building response

Search Result 38, Processing Time 0.025 seconds

3D finite element analysis of the whole-building behavior of tall building in fire

  • Fu, Feng
    • Advances in Computational Design
    • /
    • v.1 no.4
    • /
    • pp.329-344
    • /
    • 2016
  • In this paper, a methodology to simulate the whole-building behaviour of the tall building under fire is developed by the author using a 3-D nonlinear finite element method. The mechanical and thermal material nonlinearities of the structural members, such as the structural steel members, concrete slabs and reinforcing bars were included in the model. In order to closely simulate the real condition under the conventional fire incident, in the simulation, the fire temperature was applied on level 9, 10 and 11. Then, a numerical investigation on the whole-building response of the building in fire was made. The temperature distribution of the floor slabs, steel beams and columns were predicted. In addition, the behaviours of the structural members under fire such as beam force, column force and deflections were also investigated.

Study on wind-induced vibration response of Jiayuguan wooden building

  • Teng Y. Xue;Hong B. Liu;Ting Zhou;Xin C. Chen;Xiang Zhang;Zhi P. Zou
    • Wind and Structures
    • /
    • v.37 no.3
    • /
    • pp.245-254
    • /
    • 2023
  • In this paper, the wind-induced response of Jiayuguan wooden building (world cultural heritage) in Northwest China was studied. ANSYS finite element software was used to establish four kinds of building models under different working conditions and carry out modal analysis. The simulation results were compared with the field dynamic test results, obtaining the model which reflects the real vibration characteristics of the wooden tower. Time history data of fluctuating wind speed was obtained by MATLAB programming. Time domain method and ANSYS were used to analyze the wind-induced vibration response time history of Jiayuguan wooden building, obtaining the displacement time history curve of the structure. It was suggested that the wind-induced vibration coefficient of Jiayuguan wooden building is 1.76. Through analysis of the performance of the building under equivalent static wind load, the maximum displacement occurs in the three-story wall, gold column and the whole roof area, and the maximum displacement of the building is 5.39 cm. The ratio of the maximum stress value to the allowable value of wood tensile strength is 45 %. The research results can provide reference for the wind resistant design and protection of ancient buildings with similar structure to Jiayuguan wooden tower.

Simulating the Response of a 10-Storey Steel-Framed Building under Spreading Multi-Compartment Fires

  • Jiang, Jian;Zhang, Chao
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.389-396
    • /
    • 2018
  • This paper presents a numerical investigation on the structural response of a multi-story building subjected to spreading multi-compartment fires. A recently proposed simple fire model has been used to simulate two spreading multi-compartment fire scenarios in a 10-story steel-framed office building. By assuming simple temperature rising and distribution profiles in the fire exposed structural components (steel beams, steel column and concrete slabs), finite element simulations using a three-dimensional structural model has been carried out to study the failure behavior of the whole structure in two multi-compartment fire conditions and also in a standard fire condition. The structure survived the standard fire but failed in the multi-compartment fire. Whilst more accurate fire models and heat transfer models are needed to better predict the behaviors of structures in realistic fires, the current study based on very simple models has demonstrated the importance and necessity of considering spreadingmulti-compartment fires in fire resistance design of multi-story buildings.

Exploring Capabilities of BIM Tools for Housing Refurbishment in the UK

  • Kim, Ki Pyung;Park, Kenneth S
    • Journal of KIBIM
    • /
    • v.6 no.4
    • /
    • pp.9-17
    • /
    • 2016
  • Currently whole-house refurbishment for substantial energy efficiency improvement of existing housing stock is needed to achieve the targeted 80% CO2 emission reduction. As whole-house refurbishment requires a larger capital investment for lower CO2 emission, the simultaneous use of Life Cycle Costing (LCC) and Life Cycle Assessment (LCA) methodologies are recommended to generate affordable refurbishment solutions. However, two methodologies are difficult to use due to a lack of proper LCC and LCA datasets. As a response to the current problems, many researchers explore potentials in Building Information Modelling (BIM) to improve current construction practice. As a result, a BIM tool - IES IMPACT (Integrated Material Profile And Costing Tool) - has been introduced to the UK construction industry for simultaneous calculation of LCC and LCA. Thus, this research aims at examining the capability and limitation of the IES VE/IMPACT as a BIM tool for whole-house refurbishment. This research reveals that the IES VE/IMPACT is feasible for whole-house refurbishment by providing LCC and LCA information simultaneously for informed decision on refurbishment solution selection. This research shed lights on the current problems lying on the data exchange between two different BIM tools. It is revealed that additional efforts from construction professionals and industry are required to make reliable BIM objects library with LCC and LCA datasets.

Building Response to Excavation-Induced Ground Movements and Damage Estimation (굴착유발 지반변위에 의한 인접구조물의 거동 및 손상도 예측)

  • Son, Moo-Rak;Cording, E.J.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.249-256
    • /
    • 2006
  • New infrastructures and buildings are being constructed increasingly in congested urban areas, and excavation-induced ground movements often cause distortion and damage to adjacent buildings. Protection of adjacent structures occupies a major part of the cost, schedule and third-party impacts of urban development. To limit damage or mitigate their effects on nearby structures, it is highly important to understand the whole mechanism from excavation to building damage, and to estimate building damage reliably before excavation and provide appropriate measures. This paper investigates the effects of excavation-induced ground movements on nearby structures, considering soil-structure interactions for ground and structures, and a building damage criterion, which is based on the state of strain, is proposed. The criterion is compared with other existing damage estimation criteria and a procedure is finally provided for estimating building damage due to excavation-induced ground movements.

  • PDF

Vibration Control of a Building Structure with a Tuned Liquid Damper Using Real-Time Hybrid Experimental Method (실시간 하이브리드 실험법을 이용한 동조액체댐퍼가 설치된 건물의 진동제어)

  • Lee Sung-Kyung;Lee Sang-Hyun;Min Kyung-Won;park Eun-Churn;Woo Sung-Sik;Chung Lan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.256-263
    • /
    • 2006
  • In this paper, an experimental hybrid method, which implements the earthquake response control of a building structure with a TLD(Tuned Liquid Damper) by using only a TLD as an experimental part, is proposed and is experimentally verified through a shaking table test. In the proposed methodology, the whole building structure with a TLD is divided into the upper TLD and the lower structural parts as experimental and numerical substructures, respectively. At the moment, the control force acting between their interface is measured from the experimental TLD with shear-type load-cell which is mounted on shaking table. Shaking table vibrates the upper experimental TLD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and an earthquake input at its base. The experimental results show that the conventional method, in which both a TLD and a building structure model are physically manufactured and are tested, can be replaced by the proposed methodology with a simple experimental installation and a good accuracy for evaluating the control performance of a TLD.

  • PDF

Progressive collapse vulnerability in 6-Story RC symmetric and asymmetric buildings under earthquake loads

  • Karimiyan, Somayyeh;Kashan, Ali Husseinzadeh;Karimiyan, Morteza
    • Earthquakes and Structures
    • /
    • v.6 no.5
    • /
    • pp.473-494
    • /
    • 2014
  • Progressive collapse, which is referred to as the collapse of the entire building under local damages, is a common failure mode happened by earthquakes. The collapse process highly depends on the whole structural system. Since, asymmetry of the building plan leads to the local damage concentration; it may intensify the progressive collapse mechanism of asymmetric buildings. In this research the progressive collapse of regular and irregular 6-story RC ordinary moment resisting frame buildings are studied in the presence of the earthquake loads. Collapse process and collapse propagation are investigated using nonlinear time history analyses (NLTHA) in buildings with 5%, 15% and 25% mass asymmetry with respect to the number of collapsed hinges and story drifts criteria. Results show that increasing the value of mass eccentricity makes the asymmetric buildings become unstable earlier and in the early stages with lower number of the collapsed hinges. So, with increasing the mass eccentricity in building, instability and collapse of the entire building occurs earlier, with lower potential of the progressive collapse. It is also demonstrated that with increasing the mass asymmetry the decreasing trend of the number of collapsed beam and column hinges is approximately similar to the decreasing trend in the average story drifts of the mass centers and stiff edges. So, as an alternative to a much difficult-to-calculate local response parameter of the number of collapsed hinges, the story drift, as a global response parameter, measures the potential of progressive collapse more easily.

Parametric study on equivalent damping ratio of different composite structural building systems

  • Farghaly, Ahmed Abdelraheem
    • Steel and Composite Structures
    • /
    • v.14 no.4
    • /
    • pp.349-365
    • /
    • 2013
  • Structures consisting of concrete and steel parts, which are irregular in damping ratios are investigated. This investigation is a code-based seismic design of such structures. Several practical difficulties encountered, due to inherent differences in the nature of dynamic response of each part, and the different damping ratios of the two parts. These structures are irregular in damping ratios and have complex modes of vibration so that their analysis cannot be handled with the readily available commercial software. Therefore, this work aims to provide simple yet sufficiently accurate constant values of equivalent damping ratios applied to the whole structure for handling the damping irregularity of such structures. The results show that the equivalent damping ratio changes with the height of the building and the kind of the structural system, but it is constant for all accelerations values. Thus, available software SAP2000 applied for seismic analysis, design and the provisions of existing seismic codes. Finally, evaluation of different kinds of structural system used in this research to find the most energy dissipating one found by finding the best value of quality coefficient.

Earthquake Response Control of a Building with a Tuned Liquid Damper Using Hybrid Experiment Method (하이브리드 실험법을 이용한 TLD가 설치된 건물의 지진응답 제어)

  • Lee, Sung-Kyung;Lee, Sang-Hyun;Min, Kyung-Won;Park, Eun-Churn;Woo, Sung-Sik;Chung, Lan;Youn, Kyung-Jo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.527-534
    • /
    • 2006
  • A real-time hybrid method, in which the experimental implementation and the numerical computation of a structure are simultaneously carried out in real-time and combined on-line, has been used as a dynamic testing technique of structure to investigate its dynamic behaviors. In this paper, an experimental hybrid method, which implements the earthquake response control of a building structure with a TLD by using only a TLD as an experimental part, is proposed and is experimentally verified through a shaking table test. In the proposed methodology, the whole building structure with a TLD is divided into the upper TLD and the lower structural parts as experimental and numerical substructures, respectively. At the moment, the control force acting between their interface is measured from the experimental TLD with shear-type load-cell which is mounted on shaking table. Shaking table vibrates the upper experimental TLD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and an earthquake input at its base. The experimental results show that the conventional method, in which both a TLD and a building model are physically manufactured and are tested, can be replaced by the proposed methodology with a simple experimental installation and a good accuracy for evaluating the control performance of a TLD.

  • PDF

Error Estimate of Local Vibration for Building Structures Using Substructure Models (부분구조모델을 이용한 건축물의 국부진동해석에서의 오차원인 분석)

  • 안상경;이현수;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.545-552
    • /
    • 2001
  • Analysis of a structure for vertical vibration requires a lot of computational efforts because large number of degrees of freedom are generally involved in the dynamic response. Especially, when a structure is loaded with local vibration source, it may not be economical to model the whole structure to obtain the responses of specific members located near or far from the sources. In this study, substructure models have been used for analysis of local vibration An analysis of local vibration is performed for the case that the loaded point and the response point are located on the same floor. Other analysis is performed for the case that the loaded point and the response point are located on the different floor. In this case, if only the floors on which loaded and response points are located are modeled, response of substructure model is very different from that of full model. So, there should be a consideration that degrees of freedom of floors in addition to those of loaded and response floors are included to improve results of dynamic analysis. In this study, floors between loaded floor and response floor were modeled so that modeshapes which affect the response are presented well.

  • PDF