• Title/Summary/Keyword: whole genome sequencing

Search Result 259, Processing Time 0.03 seconds

Genomic characterization of clonal evolution during oropharyngeal carcinogenesis driven by human papillomavirus 16

  • Chae, Jeesoo;Park, Weon Seo;Kim, Min Jung;Jang, Se Song;Hong, Dongwan;Ryu, Junsun;Ryu, Chang Hwan;Kim, Ji-Hyun;Choi, Moon-Kyung;Cho, Kwan Ho;Moon, Sung Ho;Yun, Tak;Kim, Jong-Il;Jung, Yuh-Seog
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.584-589
    • /
    • 2018
  • Secondary prevention via earlier detection would afford the greatest chance for a cure in premalignant lesions. We investigated the exomic profiles of non-malignant and malignant changes in head and neck squamous cell carcinoma (HNSCC) and the genomic blueprint of human papillomavirus (HPV)-driven carcinogenesis in oropharyngeal squamous cell carcinoma (OPSCC). Whole-exome (WES) and whole-genome (WGS) sequencing were performed on peripheral blood and adjacent non-tumor and tumor specimens obtained from eight Korean HNSCC patients from 2013 to 2015. Next-generation sequencing yielded an average coverage of $94.3{\times}$ for WES and $35.3{\times}$ for WGS. In comparative genomic analysis of non-tumor and tumor tissue pairs, we were unable to identify common cancer-associated early mutations and copy number alterations (CNA) except in one pair. Interestingly, in this case, we observed that non-tumor tonsillar crypts adjacent to HPV-positive OPSCC appeared normal under a microscope; however, this tissue also showed weak p16 expression. WGS revealed the infection and integration of high-risk type HPV16 in this tissue as well as in the matched tumor. Furthermore, WES identified shared and tumor-specific genomic alterations for this pair. Clonal analysis enabled us to infer the process by which this transitional crypt epithelium (TrCE) evolved into a tumor; this evolution was accompanied by the subsequent accumulation of genomic alterations, including an ERBB3 mutation and large-scale CNAs, such as 3q27-qter amplification and 9p deletion. We suggest that HPV16-driven OPSCC carcinogenesis is a stepwise evolutionary process that is consistent with a multistep carcinogenesis model. Our results highlight the carcinogenic changes driven by HPV16 infection and provide a basis for the secondary prevention of OPSCC.

Genome wide association study on feed conversion ratio using imputed sequence data in chickens

  • Wang, Jiaying;Yuan, Xiaolong;Ye, Shaopan;Huang, Shuwen;He, Yingting;Zhang, Hao;Li, Jiaqi;Zhang, Xiquan;Zhang, Zhe
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.4
    • /
    • pp.494-500
    • /
    • 2019
  • Objective: Feed consumption contributes a large percentage for total production costs in the poultry industry. Detecting genes associated with feeding traits will be of benefit to improve our understanding of the molecular determinants for feed efficiency. The objective of this study was to identify candidate genes associated with feed conversion ratio (FCR) via genomewide association study (GWAS) using sequence data imputed from single nucleotide polymorphism (SNP) panel in a Chinese indigenous chicken population. Methods: A total of 435 Chinese indigenous chickens were phenotyped for FCR and were genotyped using a 600K SNP genotyping array. Twenty-four birds were selected for sequencing, and the 600K SNP panel data were imputed to whole sequence data with the 24 birds as the reference. The GWAS were performed with GEMMA software. Results: After quality control, 8,626,020 SNPs were used for sequence based GWAS, in which ten significant genomic regions were detected to be associated with FCR. Ten candidate genes, ubiquitin specific peptidase 44, leukotriene A4 hydrolase, ETS transcription factor, R-spondin 2, inhibitor of apoptosis protein 3, sosondowah ankyrin repeat domain family member D, calmodulin regulated spectrin associated protein family member 2, zinc finger and BTB domain containing 41, potassium sodium-activated channel subfamily T member 2, and member of RAS oncogene family were annotated. Several of them were within or near the reported FCR quantitative trait loci, and others were newly reported. Conclusion: Results from this study provide valuable prior information on chicken genomic breeding programs, and potentially improve our understanding of the molecular mechanism for feeding traits.

Whole Genome Sequence of a Korean Isolate (strain 51) of Helicobacter pylori

  • Lee Woo Kon;Cho Myung Je;Baik Seung Chul;Song Jae Young;Park Jeong Uck;Kang Hyung Lyun;Youn Hee Shang;Ko Gyung Hyuck;Rhee Kwang Ho
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.180-182
    • /
    • 2002
  • Substantial genomic diversity has been expected among clinical isolates of H. pylori. We have suggested that the two complete H. pylori genomes already sequenced may be insufficient for providing a discriminatory tool for typing clinical isolates as well as an insight into the genomic diversity, which enable to establish strategy for control of H. pylori infection. In this study, we determine the nucleotide sequence of the entire genome of Korean strain 51 and compare it with two reported genomic sequences to suggest validity for extensive genomic sequencing of H. pylori. The genome of H. pylori 51 consists of a circular chromosome with a size of 1,591,297 bp, which is corresponding to $95.4\%\;and\;96.8\%$ of the 26695 and J99 chromosome length, respectively. We predict that there are 1,454 open reading frames (ORFs) in 51, representing $91.4\%\;and\;97.2\%$ of the reported numbers of ORF of 26695 and J99, respectively. In contrast to 26695 and J99 that have 123 and 65 strain-specific genes, respectively, of the 1,454 genes, only 39 genes are unique to 51. Differences in genomic organization between 51 and each foreign strain were greater than between 2 foreign strains in pair wise entire sequence alignments by BLASTN. Particularly, the extent of genomic rearrangement observed between 51 and 26695 is higher than between 51 and J99. Multiple sequence alignment of orthologous genes among 3 strains showed that 51 is genetically closer to 26695 rather than J99. Phylogenetic analysis of nonsynonymous and synonymous mutation indicated J99 has the longest branch length in the unrooted phylogenetic tree, suggesting that J99 has higher mutation rate than the other 2 strains.

  • PDF

cSNP Identification and Genotyping from C4B and BAT2 Assigned to the SLA Class III Region (돼지 SLA class III 영역 내 C4B 및 BAT2의 cSNP 동정 및 이를 이용한 유전자형 분석)

  • Kim, J.H.;Lim, H.T.;Seo, B.Y.;Lee, S.H.;Lee, J.B.;Yoo, C.K.;Jung, E.J.;Jeon, J.T.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.549-558
    • /
    • 2007
  • C4B and BAT2, assigned to the SLA class III region, were recently reported on relation with human diseases. The primers for RT-PCR and RACE-PCR for CDS analysis of these genes of pig were designed by aligning the CDSs of humans and mice from GenBank. After we amplified and sequenced with these primers and cDNAs, the full-length CDSs of pig were determined. The CDS lengths of C4B and BAT2 were shown as 5226 bp and 6501 bp. In addition, the identities of nucleotide sequences with human and mouse were 76% to 87%, and the identities of amino acids were 72% to 90%. After we carried out the alignment with determined CDSs in this study and pig genomic sequences from GenBank, the primers for cSNP detection in genome were designed in intron regions that flanked one or more exons. Then, we amplified and directly sequenced with genomic DNAs of six pig breeds. Four cSNPs from C4B and three 3 cSNPs from BAT2 were identified. In addition, amino acid substitution occurred in six cSNP positions except for C4248T of C4B. By the Multiplex-ARMS method, we genotyped seven cSNPs with DNA samples used for direct sequencing. We verified that this result was the same as that analyzed using direct sequencing. To demonstrate recrudescence, we performed both direct sequencing and Multiplex-ARMS on two randomly selected DNA samples. The genotype of each sample showed the same result from both methods. Therefore, seven cSNPs were identified from C4B and BAT2 and could be used as the basic data for haplotype analysis of SLA class III region. Moreover, the Multiplex-ARMS method should be powerful for genotyping of genes assigned to the whole SLA region for the xenograft study.

Analysis of Single Nucleotide Polymorphisms of Leptin Gene in Hanwoo(Korean Cattle) (한우 Leptin 유전자의 단일 염기 다형성 분석)

  • Lee, J.-Min;Song, G.C.;Lee, J.Y.;Kim, Young-Bong
    • Journal of Animal Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.295-302
    • /
    • 2007
  • Leptin, the product of the obese(ob) gene, is an adipocyte-derived hormone for the regulation of whole- body energy storage and energy usage. It has been reported that the homozygous mutations in the gene for leptin(LEP) induce obesity and reduce energy expenditure. In cattle, LEP has significant roles directly or indirectly related with phenotypes such as body weight and fat deposits, therefore SNPs of LEP have been considered important genetic marker to estimate carcass fat content in cattle. In this study, SNPs were screened in LEP(2,222 bp) between intron 1 to 3'-UTR from 24 independent Hanwoo(Korean cattle) by PCR and DNA sequencing. Total 25 SNPs were found and two nonsynonymous SNPs including T1163A(V19E) and G3256A(G132D) were newly detected only from Hanwoo. Among 20 SNPs previously reported in cattle, 16 SNPs were found in Hanwoo; however, the frequencies of some SNPs were significantly different between Hanwoo and western cattle breeds. The other 4 SNPs were not detected from Hanwoo. These Hanwoo specific SNP patterns in LEP will be used in development of molecular marker and application to genetic improvement of Hanwoo.

At Death's Door: Alternaria Pathogenicity Mechanisms

  • Lawrence, Christopher B.;Mitchell, Thomas K.;Craven, Kelly D.;Cho, Yang-Rae;Cramer, Robert A.;Kim, Kwang-Hyung
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.101-111
    • /
    • 2008
  • The fungal genus Alternaria is comprised of many saprophytic and endophytic species, but is most well known as containing many notoriously destructive plant pathogens. There are over 4,000 Alternaria/host associations recorded in the USDA Fungal Host Index ranking the genus 10th among nearly 2,000 fungal genera based on the total number of host records. While few Alternaria species appear to have a sexual stage to their life cycles, the majority lack sexuality altogether. Many pathogenic species of Alternaria are prolific toxin producers, which facilitates their necrotrophic lifestyle. Necrotrophs must kill host cells prior to colonization, and thus these toxins are secreted to facilitate host cell death often by triggering genetically programmed apoptotic pathways or by directly causing cell damage resulting in necrosis. While many species of Alternaria produce toxins with rather broad host ranges, a closely-related group of agronomically important Alternaria species produce selective toxins with a very narrow range often to the cultivar level. Genes that code for and direct the biosynthesis of these host-specific toxins for the Alternaria alternata sensu lato lineages are often contained on small, mostly conditionally dispensable, chromosomes. Besides the role of toxins in Alternaria pathogenesis, relatively few genes and/or gene products have been identified that contribute to or are required for pathogenicity. Recently, the completion of the A. brassicicola genome sequencing project has facilitated the examination of a substantial subset of genes for their role in pathogenicity. In this review, we will highlight the role of toxins in Alternaria pathogenesis and the use of A. brassicicola as a model representative for basic virulence studies for the genus as a whole. The current status of these research efforts will be discussed.

Identification of the spk Gene Encoding Sphingosine Kinase in Sphingomonas chungbukensis DJ77 and Its Expression in Escherichia coli (Sphingomonas chungbukensis DJ77에서 Sphingosine Kinase를 암호화하는 spk 유전자의 동정과 대장균에서의 발현)

  • Lee Su-Ri;Um Hyun-Ju;Kim Young-Chang
    • Korean Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.93-98
    • /
    • 2005
  • The sphingosine kinase gene, which is 969-nucleotide long, was identified during the whole genome sequencing of Sphingomonas chungbukensis DJ77. The amino acid sequence showed the identity of $55\%$ with that of Zymomonas mobilis subsp. mobilis ZM4. C2, C3, and C5 domains of eukaryotic sphingosine kinase were found in sphingosine kinase from Sphingomonas chungbukensis DI77. One of these three conserved sites, GGDG, was predicted as a ATP-binding site, and the functions of the others were unknown currently. The phylogenetic tree constructed by ClustalX indicated that the sphingosine kinase of S. chungbukensis DJ77 was near the phylogenetic group COG1597, and did not belong to the group of diacylglycerol kinase of the same strain. The recombinant sphingosine kinase was expressed in Escherichia coli, but it was made in form of inclusion body.

Evolutionary Analyses of Hanwoo (Korean Cattle)-Specific Single-Nucleotide Polymorphisms and Genes Using Whole-Genome Resequencing Data of a Hanwoo Population

  • Lee, Daehwan;Cho, Minah;Hong, Woon-young;Lim, Dajeong;Kim, Hyung-Chul;Cho, Yong-Min;Jeong, Jin-Young;Choi, Bong-Hwan;Ko, Younhee;Kim, Jaebum
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.692-698
    • /
    • 2016
  • Advances in next generation sequencing (NGS) technologies have enabled population-level studies for many animals to unravel the relationships between genotypic differences and traits of specific populations. The objective of this study was to perform evolutionary analysis of single nucleotide polymorphisms (SNP) in genes of Korean native cattle Hanwoo in comparison to SNP data from four other cattle breeds (Jersey, Simmental, Angus, and Holstein) and four related species (pig, horse, human, and mouse) obtained from public databases through NGS-based resequencing. We analyzed population structures and differentiation levels for the five cattle breeds and estimated species-specific SNPs with their origins and phylogenetic relationships among species. In addition, we identified Hanwoo-specific genes and proteins, and determined distinct changes in protein-protein interactions among five species (cattle, pig, horse, human, mouse) in the STRING network database by additionally considering indirect protein interactions. We found that the Hanwoo population was clearly different from the other four cattle populations. There were Hanwoo-specific genes related to its meat trait. Protein interaction rewiring analysis also confirmed that there were Hanwoo-specific protein-protein interactions that might have contributed to its unique meat quality.

False-Positive Mycobacterium tuberculosis Detection: Ways to Prevent Cross-Contamination

  • Asgharzadeh, Mohammad;Ozma, Mahdi Asghari;Rashedi, Jalil;Poor, Behroz Mahdavi;Agharzadeh, Vahid;Vegari, Ali;Shokouhi, Behrooz;Ganbarov, Khudaverdi;Ghalehlou, Nima Najafi;Leylabadlo, Hamed Ebrahmzadeh;Kafil, Hossein Samadi
    • Tuberculosis and Respiratory Diseases
    • /
    • v.83 no.3
    • /
    • pp.211-217
    • /
    • 2020
  • The gold standard method for diagnosis of tuberculosis is the isolation of Mycobacterium tuberculosis through culture, but there is a probability of cross-contamination in simultaneous cultures of samples causing false-positives. This can result in delayed treatment of the underlying disease and drug side effects. In this paper, we reviewed studies on false-positive cultures of M. tuberculosis. Rate of occurrence, effective factors, and extent of false-positives were analyzed. Ways to identify and reduce the false-positives and management of them are critical for all laboratories. In most cases, false-positive is occurring in cases with only one positive culture but negative direct smear. The three most crucial factors in this regard are inappropriate technician function, contamination of reagents, and aerosol production. Thus, to reduce false-positives, good laboratory practice, as well as use of whole-genome sequencing or genotyping of all positive culture samples with a robust, extra pure method and rapid response, are essential for minimizing the rate of false-positives. Indeed, molecular approaches and epidemiological surveillance can provide a valuable tool besides culture to identify possible false positives.

Prevalence and Genetic Characterization of mcr-1-Positive Escherichia coli Isolated from Retail Meats in South Korea

  • Kim, Seokhwan;Kim, Hansol;Kang, Hai-Seong;Kim, Yonghoon;Kim, Migyeong;Kwak, Hyosun;Ryu, Sangryeol
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1862-1869
    • /
    • 2020
  • The spread of plasmid-mediated colistin resistance has posed a serious threat to public health owing to its effects on the emergence of pandrug-resistant bacteria. In this study, we investigated the prevalence and characteristics of mcr-1-positive Escherichia coli isolated from retail meat samples in Korea. In total, 1,205 E. coli strains were isolated from 3,234 retail meat samples in Korea. All E. coli strains were subjected to antimicrobial susceptibility testing and were examined for the presence of mcr-1 gene. All mcr-1-positive E. coli (n = 10, 0.8%) from retail meat were subjected to pulse-field gel electrophoresis (PFGE) and whole-genome sequencing (WGS). The transferability of mcr-1 gene was determined by conjugation assays. The mcr-1-positive strains exhibited diverse clonal types. Our mcr-1 genes were located in plasmids belonged to the IncI2 (n = 1) and IncX4 (n = 8) types, which were reported to be prevalent in Asia and worldwide, respectively. Most mcr-1 genes from mcr-1-positive strains (9/10) were transferable to the recipient strain and the transfer frequencies ranged from 2.4 × 10-3 to 9.8 × 10-6. Our data suggest that the specific types of plasmid may play an important role in spreading plasmid-mediated colistin resistance in Korea. Furthermore, our findings suggest that the retail meat may be an important tool for disseminating plasmid-mediated colistin resistance.