• Title/Summary/Keyword: whole brain

Search Result 469, Processing Time 0.023 seconds

Physiological and Psychological Effects of Vibroacoustic Stimulation to Scapular and Sacrum of Supine Position

  • Lim, Seung Yeop;Heo, Hyun;Kim, Sang Ho;Won, Byeong Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.345-353
    • /
    • 2013
  • Objective: This research measured physiological and psychological effects of Vibroacoustic stimulation(VA) to scapular and sacrum of supine position on the mattress. Background: When vibroacoustic stimulation applies to human body, it has a positive influence on physiological and psychological effects by stimulating the organs, tissues and cells of whole body. Method: This experiment was conducted to 10 normal males in two conditions: no stimulation and vibroacoustic stimulation. No stimulation experiment was executed as a supine position for 30 minutes without any vibrational stimulus, while vibroacoustic stimulation was transmitted by the vibrational speaker, which uses 40Hz frequency. Subjects had a laser Doppler flowmeter probe in scapular, sacrum, and also had 8 channel electroencephalogram(EEG) measurement sensor in the scalp. Blood pressure and skin temperature were measured in two conditions with an underlying posture for 30 minutes. Additionally, blood flow rate and EEG were measured before and after for two minutes on two conditions. Results: According to the vibroacoustic stimulation, blood flow rate and skin temperature were increased, while blood pressure was decreased. When using vibroacoustic stimulation compared to no stimulation, blood flow rate went approximately two times higher, and skin temperature also higher 3~4 times. Furthermore, the relative alpha power of brain wave was significantly increased when we applied to vibroacoustic stimulation. Conclusion: This experiment tested the VAT embedded in mattress in two conditions. According to this experiment, VAT decreases blood pressure, improves not only a physiological effect on blood flow rate as well as skin temperature, but also psychological functions by increasing relative alpha power. Application: The results of the publishing trend analysis might help physiological and psychological effects of vibroacoustic stimulation.

Effect of Gamma-Aminobutyric Acid on the Gustatory Nucleus Tractus Solitarius in Rats

  • Kim, Mi-Won;Park, Ha-Ok;Pahng, Mong-Sook;Park, Sang-Won;Kim, Sun-Hun;Jung, Ji-Yeon;Jeong, Yeon-Jin;Kim, Won-Jae
    • International Journal of Oral Biology
    • /
    • v.30 no.3
    • /
    • pp.91-98
    • /
    • 2005
  • Gamma-aminobutyric acid (GABA) is known as an inhibitory neurotransmitter in the neurons of the central nervous system. However, its detailed action mechanisms in the rostral gustatory zone of the nucleus tractus solitarius (rNTS) have not been established. The present study was aimed to investigate the distribution, role and action mechanisms of GABA in rNTS. Membrane potentials were recorded by whole cell recordings in isolated brain slices of the rat medulla. Superfusion of GABA resulted in a concentration-dependent reduction in input resistance in the neurons in rNTS. The change in input resistance ws accompanied by response to a depolarizing pulse were diminished by GABA. Superfusion of the slices with either $GABA_A$ agonist, muscimol, $GABA_B$ agonist, baclofen or $GABA_C$ agonist, TACA, decreased input resistance and reduced the nerve activity in association with membrane hyperpolarization. It is suggested that inhibitory signals playa role in sensory processing by the rNTS, in that GABA actions occur through activation of $GABA_A,\;GABA_B\;and\;GABA_C$ receptor. These results suggest that GABA has an inhibitory effect on the rNTS through an activation of $GABA_A,\;GABA_B\;and\;GABA_C$ receptors and that the GABAergic inhibition probably plays an important role in sensory processing by the rNTS.

Language Lateralization Using Magnetoencephalography (MEG): A Preliminary Study (뇌자도를 이용한 언어 편재화: 예비 연구)

  • Lee, Seo-Young;Kang, Eunjoo;Kim, June Sic;Lee, Sang-Kun;Kang, Hyejin;Park, Hyojin;Kim, Sung Hun;Lee, Seung Hwan;Chung, Chun Kee
    • Annals of Clinical Neurophysiology
    • /
    • v.8 no.2
    • /
    • pp.163-170
    • /
    • 2006
  • Backgrounds: MEG can measure the task-specific neurophysiologic activity with good spatial and time resolution. Language lateralization using noninvasive method has been a subject of interest in resective brain surgery. We purposed to develop a paradigm for language lateralization using MEG and validate its feasibility. Methods: Magnetic fields were obtained in 12 neurosurgical candidates and one volunteer for language tasks, with a 306 channel whole head MEG. Language tasks were word listening, reading and picture naming. We tested two word listening paradigms: semantic decision of meaning of abstract nouns, and recognition of repeated words. The subjects were instructed to silently name or read, and respond with pushing button or not. We decided language dominance according to the number of acceptable equivalent current dipoles (ECD) modeled by sequential single dipole, and the mean magnetic field strength by root mean square value, in each hemisphere. We collected clinical data including Wada test. Results: Magnetic fields evoked by word listening were generally distributed in bilateral temporoparietal areas with variable hemispheric dominance. Language tasks using visual stimuli frequently evoked magnetic field in posterior midline area, which made laterality decision difficult. Response during task resulted in more artifacts and different results depending on responding hand. Laterality decision with mean magnetic field strength was more concordant with Wada than the method with ECD number of each hemisphere. Conclusions: Word listening task without hand response is the most feasible paradigm for language lateralization using MEG. Mean magnetic field strength in each hemisphere is a proper index for hemispheric dominance.

  • PDF

Expression Analysis of Interferon-Stimulated Gene 15 in the Rock Bream Oplegnathus fasciatus against Rock Bream Iridovirus (RSIV) Challenge

  • Kim, Kyung-Hee;Yang, In Jung;Kim, Woo-Jin;Park, Choul-Ji;Park, Jong-Won;Noh, Gyeong Eon;Lee, Seunghyung;Lee, Young Mee;Hwang, Hyung Kyu;Kim, Hyun Chul
    • Development and Reproduction
    • /
    • v.21 no.4
    • /
    • pp.371-378
    • /
    • 2017
  • Interferon-stimulated gene 15 (ISG15) is known to interfere with viral replication and infection by limiting the viral infection of cells. Interferon-stimulated gene 15 (ISG15) interferes with viral replication and infectivity by limiting viral infection in cells. It also plays an important role in the immune response. In this study, tissue-specific expression of ISG15 in healthy rock bream samples and spatial and temporal expression analysis of rock bream ISG15 (RbISG15) were performed following rock bream iridovirus (RSIV) infection. RbISG15 expression was significantly higher in the eye, gill, intestine, kidney, liver, muscle, spleen, and stomach, but low in the brain. There were particularly high levels of expression in the liver and muscle. RbISG15 expression was also examined in several tissues and at various times following RSIV infection. ISG15 expression increased within 3 h in the whole body and decreased at 24 h after infection. In addition, temporal expression of several tissues following RSIV infection showed a similar pattern in the muscle, kidney, and spleen, increasing at 3 h and decreasing at 72 h. These results suggest that ISG15 plays an important role in the immune response of rock bream. Overall, this study characterizes the response of RbISG15 following RSIV infection.

Selective Toxicity and Acetylcholinesterase Inhibition of Diazinon and Carbofuran to Killifish(Oryzias latipes) and Loach(Misgurnus anguillicaudatus) (Diazinon과 Carbofuran의 송사리(Oryzias latipes)와 미꾸리(Misqurnus anguillicaudatus)에 대한 선택적 독성과 Acetylcholinesterase저해)

  • Kim, Young-Bae;Lee, Sung-Kyu;Kim, Yong-Hwa;Roh, Jung-Koo
    • Korean Journal of Environmental Agriculture
    • /
    • v.7 no.2
    • /
    • pp.117-123
    • /
    • 1988
  • This study was initiated to understand the mechanism of selective toxicity of diazinon and carbofuran to killifish and loach. Conventional LC50 was calculated from fish test. IC50 with acetylcholinesterase activity was estimated using whole body and wet brain homogenate of the two fish species. Acetylcholinesterase activity of killifish was approximately twice as high as that of loach. The selective toxicity of diazinon to killifish and loach was partly (14 : 4) explained by the IC50 of diazoxon, a toxic metabolite of diazinon. IC50 of carbofuran also partly (14 : 3.4) contributed to the selectivity. These result suggested that the enzymatic method might be utilized as a screening tool for the chemicals affecting fish species of environmental concern with certain limitations which should be overcome in future studies.

  • PDF

Regulation of Systemic Energy Homeostasis by Peripheral Serotonin

  • Namkung, Jun;Oh, Chang-Myung;Park, Sangkyu;Kim, Hail
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.2 no.2
    • /
    • pp.43-45
    • /
    • 2016
  • Whole body energy balance is achieved through the coordinated regulation of energy intake and energy expenditure in various tissues including liver, muscle and adipose tissues. A positive energy imbalance by excessive energy intake or insufficient energy expenditure results in obesity and related metabolic diseases. Although there have been many obesity treatment trials aimed at the reduction of energy intake, these strategies have achieved only limited success because of their associated adverse effects. Serotonin is among those traditional pharmacological targets for anti-obesity treatment because central 5-HT functions as an anorexigenic neurotransmitter in the brain. Thus, there have been many trials aimed at increasing the activity of 5-HT in the central nervous system, and some of the developed methods are already used in the clinical setting as anti-obesity drugs. However, recent studies suggest the new functions of peripheral serotonin in energy homeostasis ranging from the endocrine regulation by gut-derived serotonin to the autocrine/paracrine regulation by adipocyte-derived serotonin. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Fat specific Tph1 knock-out (Tph1 FKO) mice exhibit similar phenotypes as mice with pharmacological inhibition of 5-HT synthesis, suggesting the localized effects of 5-HT in adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure in BAT and Htr2a KO mice exhibit the decreased lipid accumulation in WAT. These data suggest the clinical significance of the peripheral serotonergic system as a new therapeutic target for anti-obesity treatment.

An Analysis on Performance Degradation of Silicon Photomultipliers over Temperatures Variation for PET-MR Application (PET-MR 시스템에 적용을 위한 실리콘 광증배센서의 온도 변화에 따른 성능 열화 분석)

  • Park, Kyeongjin;Kim, Hyoungtaek;Lim, Kyungtaek;Cho, Minsik;Kim, Giyoon;Cho, Gyuseong
    • Journal of Radiation Industry
    • /
    • v.9 no.3
    • /
    • pp.143-151
    • /
    • 2015
  • A PET-MR system is particularly useful in diagnosing brain diseases. We have developed a prototype positron emission tomography (PET) system which can be inserted into the bore of a whole-body magnetic resonance imaging (MRI) system that enables us to obtain PET and MRI images simultaneously with a reduced cost. Silicon photomultipliers (SiPM) are appropriated as a PET detector at PET/MR system because detectors have a high gain and are insensitive to magnetic fields. Despite of its improved performance compared to that of PMT-based detectors, there is a problem of the photo-peak channel shift which is due to the increase of the temperature inside the ring detector. This problem will occur decreasing sensitivity of the PET and image distortion. In this paper, I quantitative analyze parameters of the KAIST SiPM depending on temperature by experiments. And I designed cooling methods in consideration of the degradation of sensors for correction of the temperature in the PET gantry. According to this research, we expect that distortive images and degradation of the sensitivity will not be occurred with using the above idea to reduce heat even if the PET system operates for a long time.

A novel homozygous mutation in SZT2 gene in Saudi family with developmental delay, macrocephaly and epilepsy

  • Naseer, Muhammad Imran;Alwasiyah, Mohammad Khalid;Abdulkareem, Angham Abdulrahman;Bajammal, Rayan Abdullah;Trujillo, Carlos;Abu-Elmagd, Muhammad;Jafri, Mohammad Alam;Chaudhary, Adeel G.;Al-Qahtani, Mohammad H.
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1149-1155
    • /
    • 2018
  • Epileptic encephalopathies are genetically heterogeneous disorders which leads to epilepsy and cause neurological disorders. Seizure threshold 2 (SZT2) gene located on chromosome 1p34.2 encodes protein mainly expressed predominantly in the parietal and frontal cortex and dorsal root ganglia in the brain. Previous studies in mice showed that mutation in this gene can confers low seizure threshold, enhance epileptogenesis and in human may leads to facial dysmorphism, intellectual disability, seizure and macrocephaly. Objective of this study was to find out novel gene or novel mutation related to the gene phenotype. We have identified a large consanguineous Saudi family segregating developmental delay, intellectual disability, epilepsy, high forehead and macrocephaly. Exome sequencing was performed in affected siblings of the family to study the novel mutation. Whole exome sequencing data analysis, confirmed by subsequent Sanger sequencing validation study. Our results showed a novel homozygous mutation (c.9368G>A) in a substitution of a conserved glycine residue into a glutamic acid in the exon 67 of SZT2 gene. The mutation was ruled out in 100 unrelated healthy controls. The missense variant has not yet been reported as pathogenic in literature or variant databases. In conclusion, the here detected homozygous SZT2 variant might be the causative mutation that further explain epilepsy and developmental delay in this Saudi family.

The Concept of Mental Disease in Plato (정신 질병의 탄생: 고대 그리스 의학적 시선의 철학적 기원 플라톤의 정신 질병 개념을 중심으로)

  • Jang, Misung
    • Journal of Korean Philosophical Society
    • /
    • no.121
    • /
    • pp.1-24
    • /
    • 2018
  • The aim of this paper is to expound upon the concept of mental health and disease in Plato. In ancient Greece, philosophy was to care for the health of the soul and to pursue the happiness of the life, while medicine was to care for the health of the body. It is the role of philosophy that defines what the mental disease is, rather than the realm of medicine, and the practical function of philosophy is the life of caring for our souls. In order to take care of the soul, it is important to diagnose what the mental disease is and where it comes from. In ancient Greek, medicine disease was initially regarded as a divine punishment and healing as, quite literally, a gift from the gods. Plato, however, insists that mental illness is not just brain problem but a human whole problem, (2) it is caused by imbalance and discord, and (3) ignorance is also a mental disease, (4) and furthermore, injustice and vice are mental diseases as well. Therefore Plato argues that the aim of philosophy is to practice a virtue as the mental health and further to achieve political justice to maintain the health of the soul.

A comparison of metabolomic changes in type-1 diabetic C57BL/6N mice originating from different sources

  • Lee, Seunghyun;Kwak, Jae-Hwan;Kim, Sou Hyun;Yun, Jieun;Cho, Joon-Yong;Kim, Kilsoo;Hwang, Daeyeon;Jung, Young-Suk
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.232-238
    • /
    • 2018
  • Animal models have been used to elucidate the pathophysiology of varying diseases and to provide insight into potential targets for therapeutic intervention. Although alternatives to animal testing have been proposed to help overcome potential drawbacks related to animal experiments and avoid ethical issues, their use remains vital for the testing of new drug candidates and to identify the most effective strategies for therapeutic intervention. Particularly, the study of metabolic diseases requires the use of animal models to monitor whole-body physiology. In line with this, the National Institute of Food and Drug Safety Evaluation (NIFDS) in Korea has established their own animal strains to help evaluate both efficacy and safety during new drug development. The objective of this study was to characterize the response of C57BL/6NKorl mice from the NIFDS compared with that of other mice originating from the USA and Japan in a chemical-induced diabetic condition. Multiple low-dose treatments with streptozotocin were used to generate a type-1 diabetic animal model which is closely linked to the known clinical pathology of this disease. There were no significantly different responses observed between the varying streptozotocin-induced type-1 diabetic models tested in this study. When comparing control and diabetic mice, increases in liver weight and disturbances in serum amino acids levels of diabetic mice were most remarkable. Although the relationship between type-1 diabetes and BCAA has not been elucidated in this study, the results, which reveal a characteristic increase in diabetic mice of all origins are considered worthy of further study.