• Title/Summary/Keyword: white-rot fungi

Search Result 152, Processing Time 0.021 seconds

Resistance Evaluation of Several Turfgrass Species and Graminious Crop Species against Rhizoctonia cerealis and Typhula incarnata under Controlled Conditions (주요 잔디류와 화본과 식량 밭작물의 황색마름병원균 및 설부소립균핵병원균에 대한 저항성 평가)

  • Chang, Seog-Won;Chang, Tae-Hyun;Yang, Geun-Mo;Choi, Joon-Soo;Rho, Yong-Taek
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.1
    • /
    • pp.9-15
    • /
    • 2010
  • During 2008~2009 winter season, yellow patch and gray snow mold occurred on turfgrass plants in golf courses in Kangwon and Jeonbuk provinces, respectively. The fungi associated with the diseases were identified as Rhizoctonia cerealis Van der Hoeven and Typhlua incarnata Lasch ex Fr., based on the morphological characteristics of hyphae and sclerotia. R. cerealis and T. incarnata were pathogenic to most turfgrass and crop species tested. R. cerealis infected crown, stem and leaf tissue of the host plants, and the symptom was light yellow circular patch. Individual infected leaf near the margin of patch developed red color first and finally turn brown. The symptoms caused by gray snow mold pathogen are water-soaked spots, and became a watery soft rot. Infection parts became yellow and then turned brown followed by death of the whole plant. White mycelia were developed on higher petioles, leaves, and on soil where these plant parts lay, and black sclerotia of variable size and shape formed in the mycelial mass. All isolates tested were pathogenic on most turfgrass and crop plants, and significantly different in aggressiveness. Disease severity increased with longer snow cover days on target plants, suggesting that disease severity was expressed over snow cover days. There were significant differences in disease severity among the graminious species, and among cultivars within each species, indicating varying levels of susceptibility to R. cerealis and T. incarnata.

Changes in Physical Properties and Wood Chemical Components of sawdust medium during Oak Mushroom (Lentinula edodes) Cultivation (표고 재배 중 톱밥 배지의 물리적 성질과 목재 화학성분 변화)

  • Jong-Shin Lee;Seog-Goo Kang;Seung-Min Yang;Jin-Kyoung Kim
    • The Korean Journal of Mycology
    • /
    • v.50 no.4
    • /
    • pp.291-300
    • /
    • 2022
  • In this study, the physical properties of the medium and changes in the wood chemical composition of the sawdust were investigated during the cultivation of oak mushroom sawdust bags, and the following results were obtained. After inoculation, the weight of the medium decreased during the incubation period. It is determined that this is not due to evaporation of moisture containing the medium or decomposition of sawdust, but to decomposition of rice bran, a low molecular substance added to the medium. It was confirmed that the moisture content of the medium was steadily increased during incubation, and it was estimated that the organic substrates such as rice brane in the medium was decomposed by mycelium, and water, one of the decomposition products of organic substrates, caused an increase in the moisture content of the medium. Along with the increase in the harvest of oak mushrooms, the proportion of organic substances such as holocellulose and lignin, the main components of the wood cell wall of sawdust, steadily decreased. In particular, the degradation characteristics of the wood cell wall component of shiitake, which is a white rot fungi, were confirmed by higher lignin reduction rate than that of holocellulose. On the other hand, ash, which is an inorganic material, increased with an increase in the number of mushroom harvests. The increase in the amount of ash in the medium may have been due to the decrease in the organic matter content such as holocellulose and lignin.