• 제목/요약/키워드: white rot.

검색결과 438건 처리시간 0.026초

Bacillus spp.를 이용한 사과 겹무늬썩음병의 생물학적 방제 (Biological Control of White Rot in Apple Using Bacillus spp.)

  • 이하경;신종환;이성찬;한유경
    • 식물병연구
    • /
    • 제29권4호
    • /
    • pp.390-398
    • /
    • 2023
  • 본 연구에서는 사과 겹무늬썩음병을 유발하는 Botryosphaeria dothidea를 억제하는 길항미생물을 선발하였고, 선발한 길항미생물의 항균 활성과 길항 효소 생성 여부를 확인하였다. 선발된 길항미생물 중 4종은 Bacillus velezensis로 동정되었고, 1종은 B. amyloliquefaciens로 동정되었으며 이 길항미생물은 모두 겹무늬썩음병균에 강한 항균 활성을 가지고 있었다. 또한 선발된 5종의 길항미생물은 탄저병균인 Colletotrichum fructicola, 줄기마름병인 Diaporthe eres도 효과적으로 균사생장을 억제하였다. 선발된 길항미생물을 대상으로 cellulase, protease, phosphate solubilization 효소 활성을 분석한 결과 모두 효소를 분비하여 병원균의 생장을 억제 및 사멸시키고 식물 생장촉진 활성을 가지는 것으로 확인되었다. 사과 과실에서 겹무늬썩음병균과 선발된 길항미생물을 동시 접종하여 발병 억제 효과를 검정한 결과 B. velezensis 23-168 균주가 가장 효과적으로 발병을 억제하였다. 따라서 선발된 5종의 길항미생물은 사과 진균 방제를 위한 기초자료로 사용할 수 있을 것으로 생각된다.

First Report of Sclerotinia Rot Caused by Sclerotinia sclerotiorum on Some Vegetable Crops in Korea

  • Chang, Seog-Won;Kim, Sung-Kee
    • The Plant Pathology Journal
    • /
    • 제19권2호
    • /
    • pp.79-84
    • /
    • 2003
  • Sclerotinia rot occurred severely on some vegetable crops grown in Namyangju, Yangpyung, and Yangiu areas in Korea in 2001-2002. The crops infected with Scterotinia sp. were Adenophora remotiflora, Armoracia lapathfolia, Angelica acutiloba, Angelica archangelica, Anthriscus sylvestris, Aster tataricus, Beta vulgaris var. cicla, Brassica campestris var. marinosa, Brassica juncea var. laciniata, Chicholium intybus, Lactuca indica var. dracoglossa, Lactuca sativa var. oak-leaf, Petroselinum crispum, and Phyteuma japonicum. The fungus associated with the disease was identified as Sclerotinia sclerotiorum, based on the morphological characteristics of the pathogen. The symptoms were water-soaked spots that enlarged later and became a watery soft rot. Infected parts became yellow and then turned brown, followed by death of the whole plant. White mycelia developed on the upper petioles and leaves and on the soil where these plant parts lay. Then black sclerotia in variable size and shape formed from the mycelial mass. Pathogenicity of the fungus was proven by artificially inoculating each crop. This is the first report of Sclerotinia rot on the listed vegetable crops in Korea.

접목선인장 줄기썩음병균, Fusarium oxysporum Schlecth. emend. Snyd. & Hans.의 균학적 특성과 병원성 (Mycological Characteristics and Pathogenicity of Fusarium oxysporum Schlecht. emend. Snyld. & Hans. Causing Stem Rot of Cactus)

  • 현익화;이상덕;이영희;허노열
    • 한국식물병리학회지
    • /
    • 제14권5호
    • /
    • pp.463-466
    • /
    • 1998
  • A Fusarium species was isolated from stems of cactus(Hylocereus trigonus) showing rot symptoms at Koyang, Kyonggi province in 1997. This pathogen was identified as Fusarium oxysporum based on mycological characteristics. The rot symptom appeared at the soil line and roughly circular lesions, 1∼3 mm in diameter, appeared on basal stems. The pathogen formed both microconidia and macroconidia. Microconidia were formed abundantly in false-heads on short monophialides, oval to kidney-shaped. Macroconidia were slightly sickle-shaped, 3∼5-septated with an attenuated apical cell and a foot-shaped basal cell. Colony color on PDA was white, peach or purple. Chlamydospores were formed abundantly on PDA. The pathogen was able to cause stem rot symptoms to cactus by wound inoculation as well as non-wound inoculation.

  • PDF

Phylogenetic Classification of Antrodia and Related Genera Based on Ribosomal RNA Internal Transcribed Spacer Sequences

  • Kim, Seon-Young;Park, So-Yeon;Jung, Hack-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권3호
    • /
    • pp.475-481
    • /
    • 2001
  • Sequences of ribosomal internal transcribed spaces (ITS) obtained from two Antrobia species and two related species were compared to investigate intrageneric and intergeneric phylogenetic relationships of Antrodia. The results showed that Antrodia species causing a brown rot in wood did not form a monophyletic clade and were separated into three distinct groups. Antrodia gossypina and A. vaillantii formed a clade having rhizomorphs as a homologous character. Antrodia serialis, A. sinuosa, and A. malicola formed a group together with Daedalea, Fomitopsis, and Postia species with brown rot habit. Antrodia xantha with a trimitic hyphal system and amyloid skeletal hyphae formed another distinct clade form other Antrodia species. The Antrodia species were separated from white rot genera such as Antrodiella, Diplomitoporus, Junghuhnia, and Steccherinum, indicating the phylogenetic importance of the rot type in the classification of the Polyporaceae.

  • PDF

Fusarium oxysporum Causes Root Rot on Gastrodia elata in Korea: Morphological, Phylogenetic, and Pathogenicity Analyses

  • Sang-A Lee;Eun-Kyung Bae;Chanhoon An;Min-Jeong Kang;Eung-Jun Park
    • 한국균학회지
    • /
    • 제50권1호
    • /
    • pp.41-46
    • /
    • 2022
  • Gastrodia elata infected with root rot disease was collected from cultivated G. elata fields in Gimcheon, Korea, in 2018. G. elata tuber surfaces exhibited root rot disease symptoms of dark-grey lesions and white fungal mycelial growth. The fungus was isolated from symptomatic tubers and cultured. Based on morphological characteristics and molecular analysis of the internal transcribed spacer region of ribosomal DNA and translation elongation factor 1-alpha, the isolated fungus was Fusarium oxysporum. This is the first report of root rot caused by F. oxysporum on G. elata tubers in Korea.

수질분해균(水質分解菌)에 의한 Pentachlorophenol의 미생물분해(微生物分解) (Biodegradation of Pentachlorophenol by Various White Rot Fungi)

  • 최인규;안세희
    • Journal of the Korean Wood Science and Technology
    • /
    • 제26권3호
    • /
    • pp.53-62
    • /
    • 1998
  • In this research, 7 species of white rot fungi were used for determining the resistance against pentachlorophenol (PCP). Three fungi with good PCP resistance were selected for evaluating the biodegradability, and biodegradation mechanism by HPLC and GC/MS spectrometry. Among 7 fungi, there were significant differences on PCP resistance on 4 different PCP concentrations. In the concentrations of 50 and 100ppm ($\mu$g of PCP per g of 2% malt extract agar), most fungi were easily able to grow, and well suited to newly PCP-added condition, but in that of more than 250ppm, the mycelia growths of Ganoderma lucidum 20435, G. lucidum 20432, Pleurotus ostreatus, and Daldinia concentrica were significantly inhibited or even stopped by the addition of PCP to the culture. However, Trametes versicolor, Phanerochaete chrysosporium, and Inonotus cuticularis still kept growing at 250ppm, indicating the potential utilization of wood rot fungi to high concentrated PCP biodegradation. Particularly, P. chrysosporium even showed very rapid growth rate at more than 500ppm of PCP concentration. Three selected fungi based on the above results showed an excellent biodegradability against PCP. P. chrysosporium degraded PCP up to 84% on the first day of incubation, and during 7 days, most of added PCP were degraded. T. versicolor also showed more than 90% of biodegradability at 7th day, and even though the initial stage of degradation was very slow, I. cuticularis has been approached to 90% at 21 st day after incubation with dense growing pattern of mycelia. Therefore, the PCP biodegradability was definitely dependent on the rapid suitability of fungi to newly PCP-added condition. In addition, the PCP biodegradation by filtrates of P. chrysosporium, T. versicolor, and I. cuticularis was very minimal or limited, suggesting that the extracellular enzyme system may be not so significantly related to the PCP biodegradation. Among the biodegradation metabolites of PCP, the most abundant one was pentachloroanisole which resulted in a little weaker toxicity than PCP, and others were tetrachlorophenol, tetrachloro-hydroquinone, benzoic acid, and salicylic acid, suggesting that PCP may be biodegraded by several sequential reactions such as methylation, radical-induced oxidation, dechlorination, and hydroxylation.

  • PDF

온도와 토양습도가 마늘 흑색썩음균핵병 발생에 미치는 영향 (Environmental factors Associated with Disease Development of Garlic White Rot Caused by Two Species of Sclerotium)

  • 김용기;권미경;심홍식;김택수;예완해;조원대;최인후;이성찬;고숙주;이용환;이찬중
    • 식물병연구
    • /
    • 제11권2호
    • /
    • pp.128-134
    • /
    • 2005
  • 파속채소에 발생하여 큰 피해를 주는 흑색썩음균핵병균을 대상으로 외국 도입균주와 국내 분리균주간의 유전형을 UP-PCR을 이용하여 Tyson 등이 보고한 방법으로 조사한 결과, 국내에서 분리되는 Sclerotium cepivorum은 UP-PCR그룹 b에 속하는 것으로 확인되었으며, 대균핵 형성균과 DNA profile에 있어서 현저한 차이를 보였다. 두 가지 병원균의 균핵 표면구조를 전자현미경을 이용하여 확인한 결과, S. cepivorum은 대균핵 형성균에 비해 잔주름이 적고 내부에 포자와 유사한 구조가 관찰되었다. 흑색썩음균핵병을 일으키는두 가지 병원균은모두 $10\~25^{\circ}C$에 범위에서 생장되었고 생장 최적온도는 $20^{\circ}C$이었으며, $28^{\circ}C$ 이상에서는 전혀 자라지 않았다. 두 가지 병원균의 균핵 형성정도는 $20^{\circ}C$에서 배양시 가장 높았고 균핵 발아정도는 $20\~24^{\circ}C$ 범위에서 높았다 처리온도를 달리하여 처리일수별로 휴면중인 병원균 균핵의 발아정도를 조사한 결과, $35^{\circ}C$에서 7일간 전처리한 후 $10^{\circ}C$에서 7일간 배양했을 때 발아가 가장 잘 되었으며 S. cepivorum은 $70\%$,대균핵 형성균은 $100\%$발아되었다. 담수기간 및 처리온도가 병원균의 생존에 미치는 영향을 조사한 결과 처리온도가 높아질수록 균핵 발아 정도가 감소되는 것으로 나타났다. 흑색썩음균핵병을 일으키는 두 가지 병원균은 토양습도에 따라 발병정도에 있어서 큰 차이를 보였다. 마늘흑색썩음균핵병은 토양습도가 $15\%$(-300 mb)일 때 가장 높은 발병을 보였으며 $17\%$ 이상되거나 $13\%$ 이하로 되었을 때에는 토양습도가 $15\%$일 때에 비해 병 발생이 현저히 감소되었다.

Biodegradation and Saccharification of Wood Chips of Pinus strobus and Liriodendron tulipifera by White Rot Fungi

  • Hwang, Soon-Seok;Lee, Sung-Jae;Kim, Hee-Kyu;Ka, Jong-Ok;Kim, Kyu-Joong;Song, Hong-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권11호
    • /
    • pp.1819-1825
    • /
    • 2008
  • Degradation and glucose production from wood chips of white pine (Pinus strobus) and tulip tree (Liriodendron tulipifera) by several white rot fungi were investigated. The highest weight losses from 4 g of wood chips of P. strobus and L. tulipifera by the fungal degradation on yeast extract-malt extract-glucose agar medium were 38% of Irpex lacteus and 93.7% of Trametes versicolor MrP 1 after 90 days, respectively. When 4 g of wood chips of P. strobus and L. tulipifera biodegraded for 30 days were treated with cellulase, glucose was recovered at the highest values of 106 mg/g degraded wood by I. lacteus and 450 mg/g degraded wood by T. versicolor. The weight loss of 10 g of wood chip of L. tulipifera by T. versicolor on the nutrient non-added agar under the nonsterile conditions was 35% during 7 weeks of incubation, and the cumulative amount of glucose produced during this period was 239 mg without cellulase treatment. The activities of ligninolytic enzymes (lignin peroxidase, manganese peroxidase, and laccase) of fungi tested did not show a high correlation with degradation of the wood chips and subsequent glucose formation. These results suggest that the selection of proper wood species and fungal strain and optimization of glucose recovery are all necessary for the fungal pretreatment of woody biomass as a carbon substrate.