• Title/Summary/Keyword: white rot.

Search Result 436, Processing Time 0.027 seconds

Soft Rot of Tomato Caused by Mucor racemosus in Korea

  • Kwon, Jin-Hyeuk;Hong, Seung-Beom
    • Mycobiology
    • /
    • v.33 no.4
    • /
    • pp.240-242
    • /
    • 2005
  • A soft rot of fruits caused by Mucor racemosus occurred on cherry tomato collected in Agricultural Products Wholesale Market in Jinju, Korea. The disease infection usually occurred wounded areas after cracking of fruits. At first, the lesions started with water soaked and rapidly softened and diseased lesion gradually expanded. Colonies were white to brownish to gray in color. Sporangia were $32{\sim}54\;{\mu}m$ in size and globose in shape. Sporangiophores were $8{\sim}14\;{\mu}m$ in width. Sporangiospores were $5{\sim}12\;{\times}\;4{\sim}8\;{\mu}m$ in size, ellipsoidal to subglobose in shape. Columella was $27{\sim}42\;{\mu}m$ in size, obovoid, ellipsoidal, cylindrical-ellipsoidal, slightly pyriform in shape. Chlamydospores were numerous in sporangiophores and barrel-shaped when young, subglobose in old cultures. Optimum growth temperature was about $25^{\circ}C$. The fungus was identified as M. racemosus Fres.. This is the first report of soft rot on cherry tomato caused by M. racemosus in Korea.

Soft Rot of Rhizopus oryzae as a Postharvest Pathogen of Banana Fruit in Korea

  • Kwon, Jin-Hyeuk;Ryu, Jae-San;Chi, Tran Thi Phuong;Shen, Shun-Shan;Choi, Ok-Hee
    • Mycobiology
    • /
    • v.40 no.3
    • /
    • pp.214-216
    • /
    • 2012
  • Soft rot on banana fruit caused by Rhizopus oryzae was identified for the first time in Korea. Colonies were white to light brown and formed numerous sporangiospores. Optimum temperature for mycelial growth was $30^{\circ}C$. Sporangia were globose and $30{\sim}200{\mu}m$. Sporangiophores were usually straight, $8{\sim}20{\mu}m$, and rhizoids usually in groups of 3~5. Columella were globose to sub-globose and $90{\sim}110{\mu}m$. Sporangiospores were sub-globose or oval and $4{\sim}10{\mu}m$. Based on its mycological characteristics, molecular analysis, and pathogenicity to host plants, this fungus was identified as Rhizopus oryzae Went & Prisen Geerligs. This is the first report of soft rot on banana caused by Rhizopus oryzae in Korea.

Occurrence of Sclerotium Rot in Allium tuberosum Caused by Sclerotium rolfsii in Korea

  • Kwon, Jin-Hyeuk;Kang, Dong-Wan;Song, Won-Doo;Choi, Ok-Hee
    • Mycobiology
    • /
    • v.39 no.3
    • /
    • pp.230-232
    • /
    • 2011
  • In this study, we characterized sporadically occurring sclerotium rot caused by Sclerotium rolfsii in Chinese chive (Allium tuberosum Roth.) in farm fields in Sacheon, Korea. The initial symptom of the disease was water-soaked, which progressed to rotting, wilting, blighting, and eventually death. Further, mycelial mats spread over the lesions near the soil line, and sclerotia formed on the scaly stem and leaves. The sclerotia were globoid, 1~3 mm, and white to brown. The optimum temperature for growth and sclerotia formation on potato dextrose agar (PDA) was $30^{\circ}C$. The diameter of the hypae ranged from 4 to 8 ${\mu}m$. Clamp connection was observed on PDA medium after 5 days of incubation. Based on the mycological characteristics, internal transcribed spacer sequence analysis, and pathogenicity test, the causal agent was identified as Sclerotium rolfsii Saccardo. This is the first report of sclerotium rot in Chinese chive caused by S. rolfsii in Korea.

Stem Rot of Garlic (Allium sativum) Caused by Sclerotium rolfsii

  • Kwon, Jin-Hyeuk
    • Mycobiology
    • /
    • v.38 no.2
    • /
    • pp.156-158
    • /
    • 2010
  • Stem rot disease was found in garlic (Allium sativum L.) cultivated from 2008 to 2010 in the vegetable gardens of some farmers in Geumsan-myon, Jinju City, Gyeongnam province in Korea. The initial symptoms of the disease were typical water-soaked spots, which progressed to rotting, wilting, blighting, and eventually death. White mycelial mats had spread over the lesions near the soil line, and sclerotia had formed over the mycelial mats on the stem. The sclerotia were globoid in shape, 1~3 mm in size, and tan to brown in color. The optimum temperature for growth and sclerotia formation on potato dextrose agar (PDA) medium was $30^{\circ}C$. The diameter of the hyphae ranged from approximately 4 to $8\;{\mu}m$. Typical clamp connection structures were observed in the hyphae of the fungus, which was grown on PDA medium for 4 days. On the basis of the mycological characteristics and pathogenicity of the fungus on the host plants, the causal agent was identified as Sclerotium rolfsii Saccardo. This is the first report of stem rot disease in garlic caused by S. rolfsii in Korea.

Pathogen Physiology, Epidemiology and Varietal Resistance in White Rot of Apple (사과 흰빛썩음병백부병(白腐病)의 병원균(病原菌) 생리(生理), 포장(圃場)에서의 전염(傳染) 및 품종저항성(品種抵抗性))

  • Cho, Won-Dae;Kim, Choong-Hoe;Kim, Seung-Chul
    • Korean journal of applied entomology
    • /
    • v.25 no.2 s.67
    • /
    • pp.63-70
    • /
    • 1986
  • Severity of incidence of white rot on apple fruit ranged from 5 to 16% and averaged 9% over major apple growing area in 1981. An isolate of Botryosphaeria ribis obtained from rotted apples developed lesions on leaves, branches and fruits of apple, pear, peach and grape in a series of wound inoculation test. B. ribis grew well on both potato sucrose agar and oatmeal agar. The best condition for vegetative growth on these two media was at $25{\sim}30^{\circ}C$ pH 4 and $10{\sim}15%$ sucrose content under light illumination. Rot development on fruit was first observed in the orchard at early August when sugar content in fruit reached 9.0%. Thereafter, number of rotted apples increased as sugar content increased. There was no correlation between the pH of juice of fruit and rot incidence. Infection on fruit began to occur as early as mid-June when young fruits were formed and infections were continued until harvest. When apple fruits were collected at 10-day intervals from the orchard beginning from early June and were wound-inoculated with B. ribis, rot lesion developed regardless of the stage of fruit growth. Incidence of white rot in the orchard was severe on Golden-delicious and Yukou, intermediate on Aoli, Fugi and Indo, and least on Jonathan and Red-delicious.

  • PDF

Antifungal Activity of Bacillus Subtilis HK2 against Trichothecium Roseum Causing Pink Rot of Melon and White Stain Symptom on Grape (멜론 분홍빛썩음병과 포도 흰얼룩병의 원인균인 Trichothecium Roseum에 대한 Bacillus Subtilis HK2의 항균활성)

  • Oh, Soh-Young;Lee, En-Young;Nam, Ki-Woong;Yoon, Deok-Hoon
    • Korean Journal of Plant Resources
    • /
    • v.29 no.1
    • /
    • pp.39-45
    • /
    • 2016
  • Pink Rot on melon and White Stain Symptom on grape are caused by Trichothecium roseum, one of the most important diseases of grape and melon. These diseases have been occurred in national-wide in Korea and causes irreversible damage on the grape and the melon at harvest season. This research presents the evaluation of the capacity of Bacillus subtillis HK2 to protect both melon and grape against T. reseum and establishes its role as a biocontrol agent. In this study, we isolated a Bacillus strain HK2 from rhizosphere soil, identified it as Bacillus subtillis by 16S rRNA analysis and demonstrated its antifungal activity against T. roseum. Under I-plate assay it was observed that the effect of hyphal growth inhibition was not due to production of volatile compounds. The optimum culture condition of HK2 was found at 30℃ and initial pH of 7.0. Application of HK2 culture suspension reduced 90.2% of white stain symptom on grape as compared to control, resulting in greater protection to grape against T. roseum infestation. Butanol extract of HK2 culture purified using flash column chromatography. The antifungal material was a polar substance as it showed antifungal activity in polar elute. Therefore, our results indicated a clear potential of B. subtilis HK2 to be used for biocontrol of Pink rot in melon and white stain symptom on grape caused by T. roseum.

Chitosan이 사과 겹무늬썩음병균 Botryosphaeria dothidea의 생육에 미치는 영향

  • 이승지;엄재열;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.3
    • /
    • pp.261-267
    • /
    • 1996
  • To examine the potential utilization of chitosan, the biodegradable natural polymer, as a control agent of apple white rot caused by Botryosphaeria dothidea in a new control measure by coating it on the diseased branches, the various antifungal activities of chitosan was investigated. Chitosan showed significant inhibitory effect on the mycelial growth of B. dothidea, along with the morphological changes including hyphal swelling and ultrastructural changes on solid PDA medium. In liquid PD broth medium, the chitosan showed more significant effect on the growth of B. dothidea also forming cell clusters indicating affection on the hyphal extension. The growth of B. dothidea was inhibited more than 90% at the concentration of 1.0 mg/ml. Chitosan also detained the spore germination and induced the morphological change of germ tubes. Glucosamine, monomer of chitosan, did not affect on the growth of B. dothidea indicating the antifungal activity was caused by chitosan polymer.

  • PDF

Chemical Control of White and Violet Root Rot Caused by Rosellinia necatrix and Helicobasidium mompa on Apple Tree (사과나무 흰날개무늬병과 자주날개무늬병의 약제 방제)

  • 이상범;정봉구;김기홍;최용문
    • Plant Disease and Agriculture
    • /
    • v.1 no.1
    • /
    • pp.37-44
    • /
    • 1995
  • This study was carried out to select effective fungicides against white and violet root rot caused by Rosellinia necatrix and Helicobasidium mompa with nine fungicides including thiophanate-methyl from 1993 to 1994. Through laboratory, greenhouse and field trials on inhibitory effect of mycelial growth and disease incidence against the two fungal pathogens, 5 fungicides have been selected finally. Thiopanate-methyl, benomyl, iminoctadine-triacetate and isoprothiolane were proven to have high control effect against R. necatrix. In addition to thiopanate-methyl and benomyl, tolclofos-methyl has been selected for effective control of H. mompa, since it showed prominent control effect in field trial than in laboratory or green house test.

  • PDF

The Role of Enzymes Produced by White-Rot Fungus Irpex lacteus in the Decolorization of the Textile Industry Effluent

  • Shin, Kwang-Soo
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.37-41
    • /
    • 2004
  • The textile industry wastewater has been decolorized efficiently by the white rot fungus, Irpex lacteus, without adding any chemicals. The degree of the decolorization of the dye effluent by shaking or stationary cultures is 59 and 93%, respectively, on the 8th day. The higher level of manganese-dependent peroxidase (MnP) and non-specific peroxidase (NsP) was detected in stationary cultures than in the cultures shaken. Laccase activities were equivalent in both cultures and its level was not affected significantly by the culture duration. Neither lignin peroxidase (LiP) nor Remazol Brilliant Blue R oxidase (RBBR ox) was detected in both cultures. The absorbance of the dye effluent was significantly decreased by the stationary culture filtrate of 7 days in the absence of Mn (II) and veratryl alcohol. In the stationary culture filtrate, three or more additional peroxidase bands were detected by the zymogram analysis.

Isolation of Novel White-rot Fungus and Effect for Decolorization of Dye Wastewater (새로운 염색폐수(染色廢水) 색도(色度) 제거(除去) 백색부후균(白色腐朽菌)의 분리(分離) 및 색도(色度) 제거(除去) 효과(效果))

  • Nam, Youn-Ku;Kwon, Hyuk-Ku;Lee, Bong-Joon;Lee, Jang-Hoon
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.381-385
    • /
    • 2006
  • For decolorization of synthetic dyes, One fungus(HUE05-1) which was isolated from textile wastewater collected from industrial complex in Korea showed excellent ability of removing synthetic dyes. This fungus was identified as Basidiomycetes species by Internal Transcribed Spacers (ITS) sequence. Isolated fungi. HUE05-1 completely decolorized all dyes in both solid and liquid condition. The decolorization results were Reactive Orange-16, 97.12%; Reactive Blue-19, 92.09%; Reactive Blue-49, 97.04%; Reactive Yellow-145, 95.53%; Acid Orange-10, 99.18%; Acid Violet-43, 98.73%; Acid Blue-350, 94.71% and Disperse Blue-106, 90.07%.