• Title/Summary/Keyword: white gastrocnemius

Search Result 21, Processing Time 0.025 seconds

The Effects of Capsaicin Intake with High-Fat Diet on Tissue Glycogen Contents in Exercise-Trained Rats (캡사이신 첨가 고지방식이가 운동시 조직 글리코겐 농도에 미치는 영향)

  • 서혜정;임기원
    • Journal of Nutrition and Health
    • /
    • v.34 no.7
    • /
    • pp.748-753
    • /
    • 2001
  • This study is to investigate the effects of capsaicin with high-fat diet on tissue glycogen contents in exercise-trained rats. Forty male Sprague-Dawley rats were offered a high-fat diet for 2 wks in individual cages and were exercise-trained by a animal treadmill running throughout the experimental period. After 2 wks of the prefeeding with high-fat diet, the rats were divided into two group: high-fat diet group(CON)and high-fat diet + capsaicin(0.014%) group(CAP). The rats were killed by decapitation at 10 hr(rest), 1 hr and 2 hr after treadmill running(27m/min, 6$^{\circ}$). Body weight and epididymal adipose tissure weight were significantly lower in CAP than in CON, but soleus muscle weight was not different between the two groups. Glycogen contents in liver, soleus and gastrocnemius white muscles were significantly lower in CAP than in CON at rest, 1 hr and 2 hr (p<0.05). However, glycogen content in gastrocnemius red muscle was significantly higher in CAP compared with CON at 2 hr after the exercise(p<0.05). These results indicate that capsaicin intake with high-fat diet would decrease glycogen contents in liver and muscle, however, this effect on glycogen metabolism could be changed by muscle type.

  • PDF

The effects of neuromuscular electrical stimulation on skeletal muscle architecture and qualitative properties in vivo

  • Lee, Jeong-Woo;Yoon, Se-Won
    • International Journal of Contents
    • /
    • v.5 no.4
    • /
    • pp.35-39
    • /
    • 2009
  • The purpose of this study was to evaluate the changes in skeletal muscle architecture and qualitative properties by muscle contraction force when neuromuscular electrical stimulation (NMES) of 50% MVIC was applied. Sixteen subjects (8 male, 8 female) without neuromuscular disease volunteered to participate in the study. All subjects were divided into two subgroups: control (no electrical stimulation) group and 50% maximal voluntary isometric contraction (MVIC) group. NMES training program was performed in the calf muscle three times a week for 10 weeks. Before and after the experiments, the MVIC of ankle plantar flexor was measured by the use of dynamometer, and the ultrasonography in the gastrocnemius medialis muscle was measured. The following results were obtained; MVIC was significantly increased in the electrical stimulation groups. Pennation angle, muscle density, and white area index also considerably changed in the electrical stimulation groups. In conclusion, the NMES training of 50% MVIC, comparative low level, improved the skeletal muscle architecture and the qualitative properties as well as the muscle contraction force.

Effects of Isokinetic Exercise on the Composition of Muscle Fibers in Rats Lower Limb (등속성 운동이 흰쥐 하퇴의 근섬유조성에 미치는 영향)

  • Lee, Yong-Deok;Cho, Hyun-Gug;Kim, Han-Soo;Park, Youn-Ki;Suh, Tae-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.3 no.1
    • /
    • pp.75-90
    • /
    • 1991
  • This study is to characterize the effects of swimming exercise on the composition of muscle fibers in rats lower limb tissue. By comparing the exercised group (4, 8 weeks) with the control group, we analyzed the difference histologically, histochemically and morphometrically. The obtained results are as follows ; 1. In the histological view, the distance between the individual muscle fibers and the muscle bundles in exercised group was shorter than that of control group. The irregular shape of sarcolemma in exercised group was observed. 2, In the histochemical view(NADH-TR. and Myosin ATPase reaction analysis), the increased populations of red and intermediate fibers were observed, whereas the white fiber was decreased. 3. In the morphometrical view, the red and intermediate fibers of tibialis anterior and gastrocnemius in exercised group were quantitatively increased, compared with control group. However, the white fiber and connective tissue in exercised group were decreased.

  • PDF

Effects of 8-week Exercise on Bcl-2, Bax, Caspase-8, Caspase-3 and HSP70 in Mouse Gastrocnemius Muscle (8주간 운동이 생쥐의 gastrocnemius에서 Bcl-2, Bax, caspase-8, caspase-3와 HSP70에 미치는 영향)

  • Kim, Ki-Bum;Kim, Yong-An;Park, Jung-Jun
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1409-1414
    • /
    • 2010
  • The aim of this study was to investigate the effects of exercise on intrinsic and extrinsic apoptosis signaling pathways in skeletal muscle. ICR-type white male mice were divided into a control group (CON: n=10) and an exercise training group (EX: n=10) after a 1 week adaptation period. EX performed treadmill running at 16.4 m/min with a 4% incline, 40 min/day and 5 days/week for 8 weeks. Cervical dislocation was performed at 48 hours after the last bout of exercise, after which gastrocnemius skeletal muscles were immediately collected. The results of verifying the intrinsic apoptosis pathway showed that there were no significant differences in Bcl-2, Bax, or the ratio of Bax/Bcl-2 proteins between EX and CON. On the other hand, the results of verifying the extrinsic apoptosis pathway showed that caspase-8 proteins were significantly lower in EX than in CON (p<0.05). Apoptosis suppressing protein HSP70 was higher in EX than in CON. In addition, caspase-3, which is the final factor for apoptosis, was not activated. These results indicate that apoptosis did not develop since caspase-3 is non-cleaved by the effects of caspase-8 and HSP70 extrinsic pathways rather than Bcl-2 and Bax intrinsic pathways among signal pathways for apoptosis.

Effects of Dietary Fatty Acid Composition on Pro- and Macro-Glycogen Utilization and Resynthesis in Rat Skeletal Muscle (식이 지방산 종류가 운동 시 조직 내 Pro-및 Macro-Glycogen의 동원 및 재합성에 미치는 영향)

  • Lee, Jong-Sam;Kim, Jae-Chul;Kwon, Young-Woo;Lee, Jang-Kyu;Lee, Jeong-Pil;Yoon, Chung-Soo
    • Journal of Nutrition and Health
    • /
    • v.40 no.3
    • /
    • pp.211-220
    • /
    • 2007
  • The purpose of this study was to investigate that the effect of dietary fatty acid composition on pro- and macro-glycogen utilization and resynthesis. The analyses were further extended for different muscle fibers (type I, type II, & type IIb) as well as tissues (i.e., liver & heart). Total one hundred sixty Sprague-Dawley rats were used, and rats were randomly allocated into four experimental groups: animals fed standard chow diet (n=40), animals fed saturated fatty acid diet (n=40), animals fed monounsaturated fatty acid (n=40), and animals fed polyunsaturated fatty acid (n=40). Animals in each groups were further divided into five subgroups: sacrificed at REST (n=8), sacrificed at immediately after 3 hr swim exercise (P-0HR, n=8), sacrificed at one hour after 3 hr swim exercise (P-1HR, n=8), sacrificed at four hour after 3 hr swim exercise (P-4HR, n=8), and sacrificed at twenty-four hour after 3 hr swim exercise (P-24HR, n=8). Soleus (type I), red gastrocnemius (type IIa), white gastrocnemius (type IIb), liver, and heart were dissected out at appropriated time point from all animals, and were used for analyses of pro- & macro-glycogen concentrations. After 8 weeks of dietary interventions, there was no significant difference in body mass in any of dietary conditions (p>.05). After 3 hr swim exercise, blood lactate level was higher compared to resting conditions in all groups, but it was returned to resting value after 1 hr rest (p<.05). Free fatty acid concentration was higher in all high fat fed groups(regardless of fatty acid composition) than CHOW consumed group. At rest, pro- & macro-glycogen concentration was not different from any of experimental groups (p>.05). Regardless of forms of glycogen, the highest level was observed in liver (p<.01), and most cases of supercompensation after 3hr exercise observed in this study were occurred in CHOW fed tissues. Except heart muscle, all tissues used in this study showed that pro- and macro-glycogen concentration was significantly decreased after 3 hr exercise. Based on these results, two conclusions were made: first, there is no different level of glycogen content in various tissues regardless of types of fatty acids consumed and second, the highest mobilization rate would be demonstrated from CHOW fed animals compare to animals that consumed any kinds of fatty acid diet if prolonged exercise is applied.

Comparison of Augmentation Method for Achilles Tendon Repair: Using Thoracolumbar Fascia and the Polypropylene Mesh

  • Jieun Seo;Won-Jae Lee;Min Jang;Min-Soo Seo;Seong Mok Jeong;Sae-Kwang Ku;Youngsam Kwon;Sungho Yun
    • Journal of Veterinary Clinics
    • /
    • v.40 no.1
    • /
    • pp.16-24
    • /
    • 2023
  • This study aimed to compare complete ruptured tendon healing between two different repair methods using the Achilles tendon of New Zealand white rabbits. Thoracolumbar fascia (TF) padded Kessler suture, polypropylene mesh (PM) padded Kessler suture, and Kessler suture only were performed on the completely transected lateral gastrocnemius tendon, and biomechanical and histologic characteristics were assessed after 8 weeks. For biomechanical assessment, the tensile strength of each repaired tendon was measured according to the established methods. For histomorphometric analysis, hematoxylin and eosin staining for general histology, and Masson's trichrome (MT) staining for collagen fibers, Alcian blue (AB) staining for proteoglycans were performed and analyzed. Significant increases in tensile strength with remarkable decreases in the abnormalities against nuclear roundness, cell density, fiber structure, and fiber alignment and significant decreases in the mean number of infiltrated inflammatory cells and AB-positive proteoglycan-occupied regions with increases in MT-positive collagen fiber-occupied regions were demonstrated in the Kessler suture with PM or TF padding groups as compared to those of the Kessler suture group. Both of PM and TF provided potent tensile strength and supported healing with the evidence of histological examinations. This means that augmentation with PM is useful for repairing a completely ruptured Achilles tendon, without additional surgery for autograft material harvesting.

The Effects of Endurance Training Combined with Rosiglitazone on The Expression of PPARs, PGC-1α, GLUT-4 and p-AMPK-α2 in The Skeletal Muscle of Diabetic Induced-Rats (지구력 트레이닝 및 Rosiglitazone 병행 처치가 당뇨병이 유발된 쥐의 골격근에서 PPARs, PGC-1α, GLUT-4 및 p-AMPK-α2의 발현에 미치는 영향)

  • Ha, Tae-Geun;Kim, Jae-Cheol
    • Korean Journal of Exercise Nutrition
    • /
    • v.13 no.2
    • /
    • pp.131-140
    • /
    • 2009
  • The aim of this study was to investigate the expression of PPAR-α, -β/δ, -γ, PGC-1α, GLUT-4 and p-AMPK-α2 protein in the skeletal muscle of diabetic induced-rats by endurance training combined with rosiglitazone. The expression of PPAR-α, -β/δ, -γ, PGC-1α, GLUT-4 and p-AMPK-α2 protein in red and white gastrocnemius by western blotting. The body weight was higher in diabetic induced-rats compared to the normal rats and after the treatment of exercise combined with rosiglitazone was significantly reduced in the all group. The levels of blood glucose was higher in diabetic induced-rats compared to the normal rats and after the treatment of exercise combined with rosiglitazone was significantly reduced in the all group. The expression of PPAR-α, -γ, PGC-1α in skeletal muscle of diabetic induced-rats were increased all groups and increased significantly in the group with exercise combined with rosiglitazone. The expression of GLUT-4 and p-AMPK-α2 protein in the skeletal muscle of diabetic induced-rats were increased all groups and increased significantly in the group with exercise combined with rosiglitazoneI. These results suggest that exercise training and rosiglitazone may act as complementary therapies for the treatment of insulin rasistance.

The Effect of Microcurrent Stimulation on Expression of BMP-4 After Tibia Fracture in Rabbits (미세전류가 토끼 경골의 골절 후 BMP-4 발현에 미치는 영향)

  • Cho, Mi-Suk
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.3
    • /
    • pp.196-203
    • /
    • 2010
  • This study aimed to examine the effect of microcurrent stimulation on expression of Bone Morphogenetic Protein(BMP) 4 after tibia fracture in rabbits. The twenty four adult 6 month old New Zealand white rabbits weighting 2.5~3.5 ㎏ were used. Twenty four rabbits with tibia fracture were randomly divided into control and experimental groups. Each group was divided into four subgroups, based on the duration of the experiment (3, 7, 14, 28 days). The experimental groups received microcurrent stimulation of 20~25 ${\mu}A$ intensity with surface Ag-AgCl electrode (diameter 1cm, Biopac, U.S.A.) for 24 hours a day. Cathode of the microcurrent stimulator located on the tibia directly, anode of it did on the gastrocnemius muscle. After evaluation, the test results are as follows: Comparisons of immunohistochemical observation of BMP-4 in 7 days after tibial fracture show that there was shown to be a moderate positive reaction (++) on concentric circles of Harversian system and the interstitial lamella in the control group, while there was a very strong positive reaction () on concentric circles of Harversian system and interstitial lamellain the experimental group. These results suggest that applying non-invasive constant microcurrent stimulation on fractured bone is helpful to bone healing.

The Autophagic Response to Exercise Training of the Skeletal Muscle Fibers in Young and Old Mice (노화에 따른 골격근에서 운동훈련에 의한 자식작용 반응)

  • Kim, Yong-An;Kim, Young-Sang
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.400-405
    • /
    • 2011
  • Autophagy, a highly conserved mechanism of internal quality control, is essential for the maintenance of cellular homeostasis and for the orchestration of an efficient cellular response to stress. During aging, the efficiency of autophagic degradation declines and intracellular waste products accumulate. Therefore, the aim of this study is to investigate the effects of exercise on autophagic response in skeletal muscle. Twenty-four Young (4 month) and Old (12 month) ICR-type white male mice were divided into a control group (CON: n=6) and exercise training group (Tr: n=6) after an adaptation period of 1 week. Exercise consisted of treadmill running at 16.4 m/min with a 4% incline, 40 min/day and 5 days/week for 8 weeks. Cervical dislocation was performed at 48 hours after the last round of exercise, after which the gastrocnemius skeletal muscle were immediately collected. The results of verifying autophagy formation showed that the Sarcopenia index was decreased in the Old mice compared to the Young. However, it increased with exercise training in the Old. Lipidation LC3-II, Becline-1, and Atg7 were decreased in the Old mice compared to the Young. However, Lipidation LC3-II was significantly increased in the trained Old mice (Young:1 Vs Old:$1.32{\pm}0.042$, p<0.05). Based on these data, we suggest that autophagy regulatory events are the attenuated in Old mice, but that they are enhanced with exercise training.

Effects of Intensive Weight Bearing Treadmill Training and Electrical Stimulation on Skeletal Muscle Properties in Hindlimb Suspended Rats (흰 쥐의 뒷다리 현수 후 집중 체중부하 트레드밀 훈련과 전기자극이 골격근 특성에 미치는 효과)

  • Ahn, Duck-Hyun;Cho, Sang-Hyun;Yi, Chung-Hwi;Kang, Ho-Seok;Kwon, Hyuk-Cheol;Kim, Suhn-Yeop
    • Physical Therapy Korea
    • /
    • v.9 no.1
    • /
    • pp.17-42
    • /
    • 2002
  • The purpose of this study was to investigate the treatment effect of three interventions on the disuse atrophy of rat hindlimb after two weeks suspension. Forty-eight 11~12 weeks old female Sprague-Dawley white rats were divided into four intervention groups: 1) suspension only (S; n=10), 2) intensive weight bearing treadmill (IWBT; n=10), 3) electrical stimulation (ES; n=9), 4) 2)+3) (ES/IWBT; n=9). Another 10 rats received no intervention or hindlimb suspension and served as controls (C). After the interventions, 1) the cross-sectional area (CSA), 2) the ratio of white muscle fiber composition (WMFC), 3) isometric tetanic tension (ITT), and 4) muscle weights (MWs) were measured from the four calf muscle specimens. The results were as follows: 1. In all intervention groups, the CSAs of medial and lateral gastrocnemius (MG LG), soleus (SOL), and flexor digitorum superficialis (FDS) decreased when compared to the control (C) group (p<.05). The CSA increased in FDS and LG for the IWBT group, in SOL for the ES/IWBT group compared to the S only group (p<.05). 2. The ratios of WMFC in MG, LG, SOL, and FDS increased compared to the C group for all interventions (p<.05). The ratios of WMFC decreased in SOL and LG for the IWBT group, in SOL for the ES/IWBT group compared to the S only group, and decreased in SOL for the ES/IWBT group compared to the IWBT group (p<.05). 3. The ITT in the MG, LG, SOL, and FDS decreased compared to the C group for all interventions (p<.05). The ITT increased in MG LG/FDS, SOL, and the whole calf muscles (WCMs) in the IWBT, ES and ES/IWBT groups compared to the S only group (p<.05). 4. The MWs in MG LG/FDS, SOL, WCMs decreased compared to the C group for all interventions (p<.05). The MWs increased in MG LG/FDS and WCMs for the IWBT group, in SOL for the ES group, and in SOL for the ES/IWBT group compared to the S only group (p<.05). 5. In atrophied muscles, the IWBT group showed the best recovery and the ES/IWBT and ES groups followed in decreasing order. The most susceptible muscle to disuse atrophy was the SOL. But conversely, it showed the best recovery in the ES/IWBT group. After two weeks of hindlimb suspension, the calf muscles of rats atrophied and their isometric tension decreased. These changes were best reversed by hindlimb-focused treadmill activity. The next best results were achieved by electrical stimulation combined with the treadmill followed by only electrical stimulation. These findings indicate that full weight bearing treadmill activity alone or in combination with electrical stimulation are effective treatments for non-weight bearing induced muscle atrophy. Further study of the effect of different intensities of electrical stimulation and variations in the duration period of full weight bearing treadmill activity on disuse atrophy is recommended.

  • PDF