• Title/Summary/Keyword: wheat-rice system

Search Result 75, Processing Time 0.03 seconds

Characteristics of Rice and Paddy Soil under No-Till Direct-Sown Rice-Wheat Cropping System

  • Cho, Young-Son;Choe, Zhin-Ryong;Lee, Byeong-Zhin
    • Korean Journal of Organic Agriculture
    • /
    • v.7 no.2
    • /
    • pp.153-161
    • /
    • 1999
  • No-till direct-sown rice-wheat relaying cropping system has major advantages such as labor and cost saving by eliminating tillage and preparation of seed bed and transplanting. In this system, rice sowing was done simultaneously wheat harvesting. A paddy field experiment was conducted to evaluate effects of no-till years on soil microbial changes and soil physico-chemical characteristics with rice growth and development. Chemical fertilizers and agricultrual chemicals was not applied in no-till system. As the year in no-till direct-sown system the air permeability was increased and after water submerging soluble nitrogen was released Aerobic microbial-n was highest in May and then decreased after water irrigation. The population of aerobic soil microorganisms were steeply decreased after water submerging Soil microorganisms was decreased with the increased the soil depth. A month was needed for the seedling establishment in a no-tillage rice-wheat cropping system. Increased cropping years improved leaf greenness and leaf area index(LAI). But stomatal conductance(Gc) was higher in conventional cultivation system than no-till system. Stomatal conductance at panicle initiation stage was increased higher in conventional condition of leaves but the difference between conventional and no-till system was increased at heading stage. In no-till 4 years condition rice grain yield was spikelet numbers per panicle.

  • PDF

Wheat-Rice Double Cropping System in Rice Fields of the Cheonan Area for the Production of Domestic Wheat (국산밀 생산을 위한 천안지역 논에서의 밀-벼 이모작 작부체계)

  • Kim, Young-Bok;Yang, jing;Yoon, Seong-Tak
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.3
    • /
    • pp.234-245
    • /
    • 2019
  • In order to select the best varieties and cultivation methods for the production of domestic wheat for Hodugwaja(a walnut shaped confection), we carried out a 3-year experiment (2015~2017) to investigate the effect of different factors (crop variety, planting date, nitrogen fertilization) in a double cropping system (wheat then rice) on crop yields in the Cheonan area. Rice is the second crop in the system, and requires an accumulated temperature for 40 days of about $840{\sim}930^{\circ}C$ to ensure ripening. Transplanting dates for rice between June 29 and July 6 were suitable; transplanting on or after July 13 does not ensure ripening. The daily hours of sunshine ranged from 6.3 to 6.5 hours, which were slightly higher than the optimum of 6.0 to 6.1 hours. The higher the nitrogen fertilizer treatment, the higher culm length, and spike length of wheat. The yield of wheat per 10a tended to increase as the amount of nitrogen fertilizer increased. Wheat yields were highest for the Sooan variety, followed by Goso, followed by Keumgang. The number of days from transplanting to heading of rice were shortest for the Jopyeong variety followed by Unkwang, followed by Haedam. The yield of milled rice per 10a increased as the transplanting date was earlier and the transplanting date of June 9 showed the average yield of more than 500 kg in three varieties. From the results of the experiment, we recommend the Goso wheat variety and the Haedam rice variety for growing in a double cropping system under the climatic conditions of the Cheonan area.

Strengthening Food Security through Food Quality Improvement - Focus on Grain Quality and Self-Sufficiency Rate

  • Meera Kweon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.10-10
    • /
    • 2022
  • The concern about food security is rising as the unstable situation of food supply and demand due to the Covid-19 pandemic, climate change, and turbulent political situation. Korea's global food security index (GFSI), analyzed by the Economist Group, is considered good, but the level continuously decreases in comparing food security levels by country. In particular, Korea is highly dependent on food imports, and food and grain self-sufficiency rates continuously decrease. Therefore, increasing those rates to strengthen food security is urgent. Among the major grains, the self-sufficiency of wheat, com, and soybeans, except rice, is relatively low. Unlike the decrease in the annual rice consumption, the annual wheat consumption has been continuously maintained or increased, which is required public-private efforts to increase the self-sufficiency rate of wheat. Applying the government's policies implemented to increase the self-sufficiency rate of rice in the past will help increase the self-sufficiency rate of wheat. In other words, expanding wheat production and infrastructure, stabilizing supply and demand, and establishing a distribution system can be applied. However, the processing capability of wheat and rice is different, which is necessary to improve wheat quality and processing technology to produce consumer-preferred wheat-based products. The wheat and flour quality can be improved through breeding, cultivation, post-harvest management, and milling. In addition, research on formulation, processes, packaging, and storage to improve the quality of wheat-based products should be done continuously. Overall, food security could be strengthened by expanding wheat production and consumption, improving wheat quality, and increasing wheat self-sufficiency.

  • PDF

Projecting the climatic influences on the water requirements of wheat-rice cropping system in Pakistan (파키스탄 밀-옥수수 재배시스템의 기후변화를 반영한 필요수량 산정)

  • Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.486-486
    • /
    • 2018
  • During the post green revolution era, wheat and rice were the main crops of concern to cater the food security issues of Pakistan. The use of semi dwarf high yielding varieties along with extensive use of fertilizers and surface and ground water lead to substantial increase in crop production. However, the higher crop productivity came at the cost of over exploitation of the precious land and water resources, which ultimately has resulted in the dwindling production rates, loss of soil fertility, and qualitative and quantitative deterioration of both surface and ground water bodies. Recently, during the past two decades, severe climate changes are further pushing the Pakistan's wheat-rice system towards its limits. This necessitates a careful analysis of the current crop water requirements and water footprints (both green and blue) to project the future trends under the most likely climate change phenomenon. This was done by using the FAO developed CROPWAT model v 8.0, coupled with the statistically-downscaled climate projections from the 8 Global Circulation Models (GCMs), for the two future time slices, 2030s (2021-2050) and 2060s (2051-2080), under the two Representative Concentration Pathways (RCPs): 4.5 and 8.5. The wheat-rice production system of Punjab, Pakistan was considered as a case study in exploration of how the changing climate might influence the crop water requirements and water footprints of the two major crops. Under the worst, most likely future scenario of temperature rise and rainfall reduction, the crop water requirements and water footprints, especially blue, increased, owing to the elevated irrigation demands originating from the accelerated evapotranspiration rates. A probable increase in rainfall as envisaged by some GCMs may partly alleviate the adverse impacts of the temperature rise but the higher uncertainties associated with the predicated rainfall patterns is worth considering before reaching a final conclusion. The total water footprints were continuously increasing implying that future climate would profoundly influence the crop evapotranspiration demands. The results highlighted the significance of the irrigation water availability in order to sustain and improve the wheat-rice production system of Punjab, Pakistan.

  • PDF

Climatic Influence on the Water Requirement of Wheat-Rice Cropping System in UCC Command Area of Pakistan (파키스탄 UCC 관개지역 밀·쌀 재배 필요수량에 대한 기후변화 영향)

  • Ahmad, Mirza Junaid;Choi, Kyung Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.69-80
    • /
    • 2018
  • This study investigated climate change influences over crop water requirement (CWR) and irrigation water requirement (IWR) of the wheat-rice cropping system of Upper Chenab Canal (UCC) command in Punjab Province, Pakistan. PRECIS simulated delta-change climate projections under the A1B scenario were used to project future climate during two-time slices: 2030s (2021-2050) and 2060s (2051-2080) against baseline climatology (1980-2010). CROPWAT model was used to simulate future CWRs and IWRs of the crops. Projections suggested that future climate of the study area would be much hotter than the baseline period with minor rainfall increments. The probable temperature rise increased CWRs and IWRs for both the crops. Wheat CWR was more sensitive to climate-induced temperature variations than rice. However, projected winter/wheat seasonal rainfall increments were satisfactorily higher to compensate for the elevated wheat CWRs; but predicted increments in summer/rice seasonal rainfalls were not enough to complement change rate of the rice CWRs. Thus, predicted wheat IWRs displayed a marginal and rice IWRs displayed a substantial rise. This suggested that future wheat production might withstand the climatic influences by end of the 2030s, but would not sustain the 2060s climatic conditions; whereas, the rice might not be able to bear the future climate-change impacts even by end of the 2030s. In conclusion, the temperature during the winter season and rainfall during the summer season were important climate variables controlling water requirements and crop production in the study area.

Recommendation of high quality rice cultivar adapted to rice-wheat double cropping system in Korean southern plain area

  • Jeong, Han-Yong;Hwang, Woon-Ha;An, Sung-Hyun;Jeong, Jae-Heok;Lee, Hyun-Seok;Yun, Jong-Tak;Baek, Jung-Sun;Choi, Kyung-Jin;Lee, Gun-Hwi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.317-317
    • /
    • 2017
  • We performed this experiment to select high quality rice adapted to wheat-rice double cropping system. We sowed barley and wheat seed in November 2, 2015. After harvesting barley and wheat, we transplanted high quality rice cultivars: 'Unkwang', 'Hopun', 'Haepum', 'Hyunoum' in June 17 and 24. We used 'sindongjin' rice as a control. As a result, 'Hyunpum' had a highest head rice yield regardless of transplanting date. Head rice yield of 'Hyunpum' was 488.1kg/10a when transplanted in June 17, and 453.6kg/10a when transplanted in June 24. The reason for this highest head rice yield was not percentage of head rice but milled rice yield. Milled rice yield of 'Hyunpum' was 526.5kg/10a when transplanted in June 17, and 490.0kg/10a when transplanted in June 24. Percentage of head rice had little differences between rice cultivars. Among yield components, only number of panicle per $m^2$ had an effect on the differences of yield between rice cultivars. The other yield components didn't have an effect on the differences of yield between rice cultivars. Compared to June 17, only 'Unkwang' had higher head rice percentage and head rice yield in June 24. Head rice percentage of 'Unkwang' changed from 67.3% to 85.0% and head rice yield changed from 324kg/10a to 393.8kg/10a when transplanting date delayed from June 17 to June 24. When transplanting date was delayed, heading date of 'Unkwang' was more delayed than other rice cultivars. By delay of heading date, mean temperature for 40days changed from $25.0^{\circ}C$ to $22.9^{\circ}C$ which improved temperature condition during grain filling stage. This improved head rice percentage and head rice yield of 'Unkwang' transplanted in June 24. If transplanting date is more delayed than June 24, 'Unkwang' could have higher head rice percentage and head rice yield. Therefore, if you transplant rice before June 24 in rice-wheat double cropping system, 'Hyunpum' is recommended as adequate rice cultivar. But if you transplant rice after June 24, further research is needed to find out adequate rice cultivar.

  • PDF

Crop Residues Management for Rice-Wheat Cropping System in Saline-Sodic Soil

  • Ahmed, Khalil;Qadir, Ghulam;Jami, Abdul-Rehman;Rafa, Hafeezullah;Mehmood, Muhammad Aamer;Han, Kyung-Hwa;Ibrahim, Muhammad
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.4
    • /
    • pp.269-274
    • /
    • 2014
  • Series of field experiments were conducted to evaluate the long term effect of gypsum and crop residue on crop yield and soil health in rice-wheat crop rotation system in salt affected soil. A saline-sodic field having $EC_e$ (electrical conductivity of the saturation extract) 4.77 ($dSm^{-1}$); pH ($H_2O$) 8.96; SAR 43.78 ($mmol\;L^{-1}$) and gypsum requirement (G.R.) 2.86 (Mg $acre^{-1}$) was selected on Soil Salinity Research Institute Farm. Five treatments consisting of ($T_1$) control, ($T_2$) gypsum at 100% G.R., ($T_3$) gypsum at 25% G.R. + wheat straw at $3Mg\;ha^{-1}$, ($T_4$) gypsum at 25% G.R. + rice straw at $3Mg\;ha^{-1}$, ($T_5$) gypsum at 25% G.R.+ rice and wheat straw at $3Mg\;ha^{-1}$ were replicated four times under completely randomized block design. The data indicated that grain and straw yield of rice and wheat was significantly (P<0.05) increased by all the amendments used either single or in combination. $T_2$ (gypsum at 100% G.R.) significantly (P<0.05) increased grain and straw yield of rice and wheat crops followed by $T_3$ (gypsum at 25% G.R. + wheat straw at $3Mg\;ha^{-1}$) when compared with control. Soil properties were also improved by used amendments, pronounced decreased in $EC_e$, $pH_s$ and SAR were recorded in $T_2$ followed by $T_3$. The efficiency of the treatments could be arranged in following order gypsum at 100% G.R.> gypsum at 25% G.R. + wheat straw at $3Mg\;ha^{-1}$ > gypsum at 25% G.R. + rice and wheat straw at $3Mg\;ha^{-1}$ > gypsum at 25% G.R. + rice straw at $3Mg\;ha^{-1}$ > control.

Nutritional evaluation of total mixed rations containing rice grain in an in vitro rumen fermentation system

  • Yang, Sung Jae;Kim, Han Been;Moon, Joon Beom;Kim, Na Eun;Park, Joong Kook;Park, Byung Ki;Lee, Se Young;Seo, Jakyeom
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.741-748
    • /
    • 2018
  • This study was conducted to evaluate the nutritional value of total mixed rations (TMR) containing rice grain in an in vitro rumen fermentation system. Three types of grains (corn, wheat, and rice), timothy, and soybean meal (SBM) were used to prepare the experimental TMR: Corn TMR, Wheat TMR, and Rice TMR. The rumen fermentation characteristics of all the experimental TMRs were evaluated by an in vitro anaerobic system using rumen fluid for 24 and 48 h. The digestibility of the nutrients (dry matter [DM], crude protein [CP], and neutral detergent fiber [NDF]), pH, ammonia ($NH_3-N$), and volatile fatty acids (VFA) were determined. Rice TMR showed a higher DM digestibility than that of the Corn TMR at 48 h (p < 0.05). In all treatments, the CP digestibility was more than 80% at 48 h, but no significant differences were observed among the treatments. The NDF digestibility tended to be the lowest in the Wheat TMR (p = 0.06), and the pH tended to be the lowest in the Rice TMR (p = 0.09) among the treatments for the 48 h incubation. The Wheat TMR had the highest $NH_3-N$ concentration among the treatments (p < 0.01). Rice TMR had a lowest total VFA concentration among the treatments (p = 0.05) at 24 h, but no significant differences were observed at 48 h. Based on this in vitro result, it was considered that a rice grain has the potential to replace conventional grain ingredients when the TMR was formulated.

Effect of commercial wheat flour addition on retrogradation-retardation of rice cake (garaetteok) (시판 밀가루를 첨가한 가래떡의 노화 지연효과)

  • Kwon, Soon-Sung;Oh, Seon-Min;Kim, Hui-yun;Bae, Ji-Eun;Ye, Sang-Jin;Kim, Byung-Yong;Hur, Nam-Yoon;Choi, Sung-Won;Kim, Chang-Nam;Baik, Moo-Yeol
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.48-51
    • /
    • 2019
  • The purpose of this study was to investigate the retardation effect of commercial wheat flours on starch retrogradation using a model system, the rice cake (garaetteok). Rice cakes were prepared with four different commercial wheat flours in various concentrations (0.1-0.7%). The rice cakes were vacuum-packed and stored for 4 days at room temperature. The rice cakes containing > 0.3% wheat flour were not able to maintain their original appearance due to enzymatic decomposition, whereas the rice cakes containing 0.1% wheat flour did not reveal any retrogradation-retardation effect. Garaetteok containing 0.2% wheat flour maintained its shape well and showed considerably lower hardness than that of the control, thereby demonstrating a retrogradation-retardation effect. The commercial wheat flours clearly showed the retardation effect on starch retrogradation, and thus, it is important to use a proper amount. On the other hand, the retrogradation-retardation effect of the different wheat flours was not significantly altered possibly due to the same origin of wheat grain.

Compatibility of Double Cropping of Winter Wheat - Summer Grain Crops in Paddy Field of Southern Korea (남부지역 논의 밀 이모작에서 하계 곡실작물 도입의 적합성)

  • Seo, Jong-Ho;Hwang, Chung-Dong;Oh, Seong-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.1
    • /
    • pp.18-28
    • /
    • 2021
  • The growth period and productivity of cropping system of winter wheat-rice, winter wheat-bean and winter wheat-grain corn for 4 years from 2015 to 2018 were compared at the experimental field of National Institute of Crop Science in Miryang city. The harvest period of winter wheat was in mid-June, and summer crops were sown (transplanted) in late June. In transplanting of rice in late June, there was no difficulty in securing the heading of panicle and the yield of rice, but there was a lot of trouble in sowing wheat in proper time because the harvest time of rice was delayed to early November due to late maturity of rice, particularly in the mid-late maturing cultivar. There was no problem in soybean planting after winter wheat because the proper period of soybean planting is late-June. In addition, there was no problem in winter wheat sowng after soybean because the maturity period of soybean was mid-October. Selection of grain maize in double cropping with winter wheat in terms of growing periods, was desirable because grain maize had the fastest maturity among summer crops. In double cropping of winter wheat-summer crops, wheats combined with soybean and grain maize showed stable yields during three years, but there was a risk of yield declines in the wheat combined with rice in heavy rainfall year. It was possible to secure high yields in three summer crops as yields of rice, soybean, and corn were 600, 350, and 800 kg/10a, respectively. Summer crops with medium maturity was recommended because of no significant difference in yield between medium maturity and medium-late maturity cultivar. Soil physical properties were improved in soils cultivated with soybean and grain maize. Therefore, It was thought that double cropping systems of winter wheat with soybean and grain maize were superior to that of winter wheat with rice in terms of connecting period between winter wheat - summer crops and improvement of soil physical properties, and total income, particularly in soybean.