• Title/Summary/Keyword: wheat yield

Search Result 413, Processing Time 0.034 seconds

Comparison of yield and its components in spring sown wheat and barley by path coefficient analysis

  • Choi, In-Bae;Kim, Hak-Sin;Hwang, Jae-Bok;Bae, Hui-Su;Ku, Bon-Il;Park, Hong-Kyu;Par, Tae-Seon;Lee, Geon-Hwi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.234-234
    • /
    • 2017
  • Recent abnormal weather, especially continued rainfall during sowing season causes difficulty in proper sowing of wheat and delayed sowing after November 15 is concerned about freezing damage during winter, resulting in reduction of wheat yield. To correspond government policy of crop sufficiency improvement and produce and supply raw wheat and barley steadily, expansion of cultivation area is necessary and spring sowing of wheat is required. To obtain basic information on the improvement of spring sown wheat and barley production, comparison and path coefficients analysis was conducted for yield and yield related components from autumn and spring sown wheat and barley. Path analyses were known as very useful in clarifying the effects of yield components on grain yield formation, which were not accurately reflected in simple correlation anaylses. Most cultivated 5 wheat and 9 barley cultivars were sown on October and February at Cheon-ju province according to standard sowing method. For the spring sowing of wheat and barley, the varieties having vernalization degree I~III are seeded in the mid of February and seeding rate is 200~250kg/ha which is increased by 25% than autumn sowing. N-fertilizer of 95 kg/ha and the same amount of P, K dressed in autumn are applied at once as basal fertilizer. The magnitude of direct effect in each yield components on yield was in sequence as follows. In autumn wheat, grain number per $spike{\geq}$ the number of spike per $m^2$>1000-grain weight and in spring wheat, grain number per $ spike{\geq}the$ number of spike per $m^2$> 1000-grain weight. In autumn naked barley, 1000-grain weight> the number of spike per $m^2$, grain number per spike and in spring barely, the number of spike per $m^2$> grain number per spike > 1000-grain weight. In autumn covered barley, grain number per spike>the number of spike per $m^2$ and in spring coverd barley, the number of spike per $m^2$> grain number per spike, 1000-grain weight. In autumn malt barley, the number of spike per $m^2$>1000-grain weight and in spring malt barley, the direct effects of three yield components were similar. According to the path analysis of yield components for spring sown wheat and barley, it was suggested that adequate number of spike per $m^2$ was most important factor for yield increase.

  • PDF

Effect of Nitrogen Fertilizer Application on Yield and Quality of Korean Soft Wheat Cultivar 'Goso'

  • Han-yong Jeong;Yulim Kim;Chuloh Cho;Jinhee Park;Chon-Sik Kang;Jong-Min Ko;Jiyoung Shon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.63-63
    • /
    • 2022
  • Wheat flour can be categorized into bread, all-purpose, cake flour according to its protein content. Since optimal wheat flour protein content is different for each end use, it is necessary to diversify the nitrogen fertilizer methods depending on the end use and cultivar. Optimal wheat flour protein content of soft wheat (for cake flour) is lowest (<=10%) among all end use, it is necessary to develop nitrogen fertilizer methods for high yield and low protein content. In order to analyze the yield and quality changes of soft wheat as nitrogen fertilizer amount and splitting timing, soft wheat cultivar 'goso' was sown on paddy soil in jeunju, Republic of Korea ('21.10). the amount of nitrogen fertilizer was divided into 4 levels by adjusting 2kg/10a increments from 5.1 to ll.lkg/lOa, and in the N 7.1 and 9.1 kg/1 Oa(standard) treatment, N amount divided into sowing date:regrowing stage=3:7,4:6(standard), 5:5. In regrowing stage, Tiller number and N fertilizer amount at sowing date showed a correlation; y=-121.14x2+792.66x-525.41 (R2=0.77*, y: Tiller number/m2, x: N amount at sowing date(kg/10a)). Tiller number in regrowing stage was the highest when the nitrogen fertilizer amount at sowing date was 3.23kg/10a. spike number per m2 was the highest when N fertilizer was divided into sowing date:regrowing stage=3:7(N amount: 9.1kg/10a). If N fertilizer amount was fixed, grain yield was also the highest when N fertilizer was divided into sowing date :regrowing stage=3:7. Also, N amount at sowing date and grain yield showed no correlation, but N amount at regrowing stage and grain yield showed significant correlation. As N amount increased, protein content also showed a tendency to increase.

  • PDF

Estimation of wheat germplasm collected from the world for breeding by introduction to enhance wheat yield in Korea

  • Lee, Yong Jin;Lee, Sok-Young;Lee, Myung-Chul;Son, Eun-Ho;Seo, Yong Weon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.143-143
    • /
    • 2017
  • Wheat is one of the most important crops in production and consumption. Despite increasing of importance, the self-sufficiency of wheat is less than 2% in Korea. To improve yield potential and broaden the genetic pool of common wheat in Korea, introduction of alien germplasms into the Korean wheat breeding program is suggested. For effective utilization of the germplasm, we introduced total 1,195 germplasms from the world, which were provided by National Plant Germplasm System (NPGS, USDA) and evaluated the yield, field performances and agronomic traits for 8 years. Among 55 countries, germplasms from Canada, Ethiopia, Mexico and United States accounts for 78%, especially germplasms collected from United States accounts for 50%. Yield comparison of germplasms and collected region analysis indicate that the high yielding germplasms are collected from countries or states of particular range of latitude. The combination analysis of the yield and agronomic traits and the geographical information of collected region will be utilized for improving Korean wheat breeding programs.

  • PDF

Design and Development of Web-Based Decision Support Systems for Wheat Management Practices Using Process-Based Crop Model (과정기반 작물모형을 이용한 웹 기반 밀 재배관리 의사결정 지원시스템 설계 및 구축)

  • Kim, Solhee;Seok, Seungwon;Cheng, Liguang;Jang, Taeil;Kim, Taegon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.17-26
    • /
    • 2024
  • This study aimed to design and build a web-based decision support system for wheat cultivation management. The system is designed to collect and measure the weather environment at the growth stage on a daily basis and predict the soil moisture content. Based on this, APSIM, one of the process-based crop models, was used to predict the potential yield of wheat cultivation in real time by making decisions at each stage. The decision-making system for wheat crop management was designed to provide information through a web-based dashboard in consideration of user convenience and to comprehensively evaluate wheat yield potential according to past, present, and future weather conditions. Based on the APSIM model, the system estimates the current yield using past and present weather data and predicts future weather using the past 40 years of weather data to estimate the potential yield at harvest. This system is expected to be developed into a decision support system for farmers to prescribe irrigation and fertilizer in order to increase domestic wheat production and quality by enhancing the yield estimation model by adding influence factors that can contribute to improving wheat yield.

Simulation of Wheat Yield under Changing Climate in Pakistan (파키스탄 기후변화에 따른 밀생산량 모의)

  • Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.199-199
    • /
    • 2017
  • Sustainable wheat production is of paramount importance for attaining/maintaining the food self-sufficiency status of the rapidly growing nation of Pakistan. However, the average wheat yield per unit area has been dwindling in recent years and the climate-induced variations in rainfall patterns and temperature regimes, during the wheat growth period, are believed to be the reason behind this decline. Crop growth simulation models are powerful tools capable of playing pivotal role in evaluating the climate change impacts on crop yield or productivity. This study was aimed to predict the plausible variations in the wheat yield for future climatic trends so that possible mitigation strategies could be explored. For this purpose, Aquacrop model v. 4.0 was employed to simulate the wheat yield under present and future climatology of the largest agricultural province of Punjab in Pakistan. The data related to crop phenology, management and yield were collected from the experimental plots to calibrate and validate the model. The future climate projections were statistically downscaled from five general circulation models (GCMs) and compared with the base line climate from 1980 to 2010. The model was fed with the projected climate to simulate the wheat yield based on the RCP (representative concentration pathways) 4.5 and 8.5. Under the worst, most likely future scenario of temperature rise and rainfall reduction, the crop yield decreased and water footprint, especially blue, increased, owing to the elevated irrigation demands due to accelerated evapotranspiration rates. The modeling results provided in this study are expected to provide a basic framework for devising policy responses to minimize the climate change impacts on wheat production in the area.

  • PDF

Physicochemical Properties and the Product Potentiality of Soft Wheats (연질밀의 품종별 이화학적 특성 및 제품의 제조적성)

  • Lim, Eun-Young;Chang, Hak-Gil;Park, Young-Seo
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.412-418
    • /
    • 2007
  • The physicochemical properties and mixograph characteristics of soft white winter (SWW) and club wheat, as well as their product potentiality, were investigated. There were no significant differences between the SWW wheat and club wheat regarding their Single Kernel Characterization System (SKCS) properties. The straight-grade flour yield, break flour yield, ash content, and milling score of the SWW wheat were similar to those of the club wheat, and the straight-grade flour yield had a significant positive correlation to the break flour yield (r = 0.805**). The Rapid Visco-Analyzer (RVA) peak viscosity and swelling volume of the SWW wheat flour were very similar to those of the club wheat flour, and there was a significant positive correlation between the RVA peak viscosity and the swelling volume (r = 0.662**). The average mixograph absorption of the SWW wheat was higher than that of the club wheat. The club wheat resulted in a higher cookie diameter than the SWW wheat, but the difference was not significant. The sponge cake volume using the SWW wheat flour was higher than that with the club wheat flour. In addition, there was a significant correlation between the cookie diameter and the sponge cake volume (r = 0.745**).

Optimal Nitrogen Fertilizer Application Method for High Quality Bread Wheat Production

  • Han-yong Jeong;Yulim Kim;Chuloh Cho;Jinhee Park;Chon-Sik Kang;Jong-Min Ko;Jiyoung Shon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.61-61
    • /
    • 2022
  • For high quality bread wheat production in Korea, it is necessary to develop optimal nitrogen (N) fertilizer methods. For optimal N fertilizer, we evaluated the alteration of growth, yield, yield components and end-use qualities according to the treatment of N fertilizer amounts and timings at heading stages. Growth, yield, yield components, and end-use quality weren't altered by various timings of N fertilizer treatment conditions whereas, 1,000 grain weight and lodging degree was increased by increasing amounts of N fertilizer treatment conditions at 7 days after heading (7 DAH). Especially, lodging degree was significantly increased by 6kg/10a of N fertilizer treatment conditions at 7 DAH. The flour protein contents increased by various amounts of N fertilizer treatment conditions. However, SDS-sedimentation and bread loaf volumes were decreased by exceeding 6kg/10a of N fertilizer treatment conditions at 7 DAH. When considering the quality of bread, 6kg/10a N fertilizer treatment is best, but 3kg/10a N fertilizer treatment is more suitable for both quality and lodging at 7 DAH. Therefore, it is preferable to fertilize 3kg/10a of nitrogen at 7 DAH in addition to standard fertilizer when cultivate bread wheat.

  • PDF

Developing a Mathematical Model For Wheat Yield Prediction Using Landsat ETM+ Data

  • Ghar, M. Aboel;Shalaby, A.;Tateishi, R.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.207-209
    • /
    • 2003
  • Quantifying crop production is one of the most important applications of remote sensing in which the temporal and up-to-date data can play very important role in avoiding any immediate insufficiency in agricultural production. A combination of climatic data and biophysical parameters derived from Landsat7 ETM+ was used to develop a mathematical model for wheat yield forecast in different geographically wide Wheat growing districts in Egypt. Leaf Area Index (LAI) and fraction of Absorbed Photosynthetically Active Radiation (fAPAR) with temperature were used in the modeling. The model includes three sub-models representing the correlation between the reported yield and each individual variable. Simulation results using district statistics showed high accuracy of the derived correlations to estimate wheat production with a percentage standard error (%S.E.) of 1.5% in El- Qualyobia district and average (%S.E.) of 7% for the whole wheat areas.

  • PDF

Winter Wheat Grain Yield Response to Fungicide Application is Influenced by Cultivar and Rainfall

  • Byamukama, Emmanuel;Ali, Shaukat;Kleinjan, Jonathan;Yabwalo, Dalitso N.;Graham, Christopher;Caffe-Treml, Melanie;Mueller, Nathan D.;Rickertsen, John;Berzonsky, William A.
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.63-70
    • /
    • 2019
  • Winter wheat is susceptible to several fungal pathogens throughout the growing season and foliar fungicide application is one of the strategies used in the management of fungal diseases in winter wheat. However, for fungicides to be profitable, weather conditions conducive to fungal disease development should be present. To determine if winter wheat yield response to fungicide application at the flowering growth stage (Feekes 10.5.1) was related to the growing season precipitation, grain yield from fungicide treated plots was compared to non-treated plots for 19 to 30 hard red winter wheat cultivars planted at 8 site years from 2011 through 2015. At all locations, Prothioconazole + Tebuconazole or Tebuconazole alone was applied at flowering timing for the fungicide treated plots. Grain yield response (difference between treated and non-treated) ranged from 66-696 kg/ha across years and locations. Grain yield response had a positive and significant linear relationship with cumulative rainfall in May through June for the mid and top grain yield ranked cultivars ($R^2=54%$, 78%, respectively) indicating that a higher amount of accumulated rainfall in this period increased chances of getting a higher yield response from fungicide application. Cultivars treated with a fungicide had slightly higher protein content (up to 0.5%) compared to non-treated. These results indicate that application of fungicides when there is sufficient moisture in May and June may increase chances of profitability from fungicide application.

Meteorological Constraints and Countermeasures in Winter Crop Production (동작물의 기상재해와 그 대책)

  • Cho, C.H.;Lee, E.S.;Ha, Y.W.;Lee, J.I.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.411-434
    • /
    • 1982
  • Yield loss of wheat and barley due to meteorological constraints has been analyzed in order to get the basic information, which will lead to the counter-measures for dissemination of agricultural technology and administration. These meteorological damages were analyzed on the results of percentage yield loss and mechanism of damage and the aspects of constraints were explained. The annual yield loss of wheat and barley were 21.7% by meteorological stress: Cold damage, 5.9% ; excessive soil moisture, 5.6% ; lodging, 2.9% ; drought, 3.0% ; disease, 4.3% etc. Those damages by the stresses mentioned above and rain damage were analyzed in relation to the growth stages and the degrees of damage. The predispositions and the growth of wheat and barley to those meteorological stress are also discussed. Varietal resistances of wheat and barley to those stresses were indexed and the physiological and morphological characteristics of these resistant cultivars are described. Cultural practices to minimize the damages were also reviewed.

  • PDF