• Title/Summary/Keyword: wetting-drying processes

Search Result 25, Processing Time 0.019 seconds

Stability analysis of an unsaturated slope considering the suction stress (흡입응력을 고려한 불포화 사면의 안정해석법)

  • Song, Young-Suk;Lee, Nam-Woo;Hwang, Woong-Ki;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.764-771
    • /
    • 2010
  • The stability analysis method of an unsaturated slope considering the suction stress was performed on the infinite sand slope. During drying and wetting processes, the Soil-Water Characteristics Curve (SWCC) of the sand with the relative density of 75% was measured using the automated SWCC apparatus. Also, the Suction Stress Characteristics Curve (SSCC) was estimated. Based on these results, the stability analysis of an unsaturated infinite slope was carried out considering the slope angle, the weathering zone and the relative change in friction angle as a soil depth. According to the result of slope stability analysis, the safety factors of slope were less than 1 when the slope angles were more than $50^{\circ}$. The safety factors of slope tend to increase with increasing the depth from the ground surface. Especially, the safety factors have a tendency to increase and decrease above near the ground water level due to the suction stress. The maximum safety factor of slope in this analysis was occurred at the Air Entry Value (AEV) of drying process. The influence range of suction stress above the ground water level can be found out and can be defined as the funicular zone which means the metric suction range from the air entry point to the point of residual volumetric water content.

  • PDF

Establishment on the Monitoring System for Unsaturated Characteristics Variation in a Mine Waste-Dump Slope (광산폐기물 적치사면의 불포화 특성변화 모니터링 시스템 구축)

  • Song, Young-Suk;Jung, In-Keun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.3
    • /
    • pp.49-55
    • /
    • 2016
  • Field measurement units and a system were constructed and installed in a waste-dump slope at the Imgi mine to investigate and analyze the variations in the unsaturated characteristics of the soil. The field instrumentation system was composed of a data acquisition system (DAS), a solar system, and measuring sensors. The rainfall, matric suction, and volumetric water contents were continuously measured from the units in the instrumented site. The variations in matric suction and volumetric water content were primarily affected by the rainfall intensity. At the surface of the slope, the largest increase and decrease in the changes in matric suction and volumetric water content were observed during the wetting and drying processes, respectively. Also, the matric suction and volumetric water content were 5-35 kPa and 0.12-0.24, respectively. However, the ground water level was not suddenly increased just after rainfall but gradually increased after 2 or 3 days later.

Thermal-Hydro-Mechanical Behaviors in the Engineered Barrier of a HLW Repository: Engineering-scale Validation Test (고준위폐기물처분장 공학적방벽의 열-수리-역학적 거동 연구: 엔지니어링 규모의 실증실험)

  • Lee, Jae-Owan;Cho, Won-Jin
    • Tunnel and Underground Space
    • /
    • v.17 no.6
    • /
    • pp.464-474
    • /
    • 2007
  • An enhancement in the performance and safety of a high-level waste repository requires a validation of its engineered barrier. An engineering-scale test (named "KENTEX") has been conducted to investigate the thermal-hydro-mechanical behaviors in the engineered barrier of the Korean reference disposal system The validation test started on May 31, 2005 and is still under operation. The experimental data obtained allowed a preliminary and qualitative interpretation of the thermal-hydro-mechanical behaviors in the bentonite blocks. The temperature was higher as it became closer to the heater, while it became lower as it was farther away from the heater. The water content had a higher value in the part close to the hydration surface than that in the heater part. The relative humidity data suggested that a hydration of the bentonite blocks might occur by different drying-wetting processes, depending on their position. The total pressure was continuously increased by the evolution of the saturation front in the bentonite blocks and thereby the swelling pressure. Near the heater region, there was also a significant contribution of the thermal expansion of bentonite and the vapor pressure in the pores of the bentonite blocks.

Monitoring corrosion of reinforced concrete beams in a chloride containing environment under different loading levels

  • Wei, Aifang;Wang, Ying;Tan, Mike Y.J.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.253-267
    • /
    • 2015
  • Corrosion has significant adverse effects on the durability of reinforced concrete (RC) structures, especially those exposed to a marine environment and subjected to mechanical stress, such as bridges, jetties, piers and wharfs. Previous studies have been carried out to investigate the corrosion behaviour of steel rebar in various concrete structures, however, few studies have focused on the corrosion monitoring of RC structures that are subjected to both mechanical stress and environmental effects. This paper presents an exploratory study on the development of corrosion monitoring and detection techniques for RC structures under the combined effects of external loadings and corrosive media. Four RC beams were tested in 3% NaCl solutions under different levels of point loads. Corrosion processes occurring on steel bars under different loads and under alternative wetting - drying cycle conditions were monitored. Electrochemical and microscopic methods were utilised to measure corrosion potentials of steel bars; to monitor galvanic currents flowing between different steel bars in each beam; and to observe corrosion patterns, respectively. The results indicated that steel corrosion in RC beams was affected by local stress. The point load caused the increase of galvanic currents, corrosion rates and corrosion areas. Pitting corrosion was found to be the main form of corrosion on the surface of the steel bars for most of the beams, probably due to the local concentration of chloride ions. In addition, visual observation of the samples confirmed that the localities of corrosion were related to the locations of steel bars in beams. It was also demonstrated that electrochemical devices are useful for the detection of RC beam corrosion.

Digital Image Analysis (DIA) for Estimating the Degree of Saturation of The Soil-Water Characteristic Curves (SWCC) (SWCC의 포화도를 구하기 위한 DIA 적용)

  • Min, Tuk-Ki;Huy, Phan Thieu
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.3
    • /
    • pp.53-63
    • /
    • 2008
  • The aim of this study was to validate the suitability of an digital image analysis (DIA) method to measure the degree of saturation in the unsaturated conditions. This study was carried out on the Joo-Mun-Jin standard sand. A one-dimensional sand column test was used in the constant water level condition to get the correlation equation between the color number ($C_n$) and the measured degree of saturation (5). In addition, the hanging wale. column technique to determine the soil-water charactenstic curve (SWCC) was performed in a Buchner funnel. The average degree of saturation ($S_{ave}$) in the SWCC could be obtained by substituting average color number at each suction head value with the $C_n\;-\;S$ correlation equation. Comparisons were made between the measured results by the hanging water column test and those obtained from DIA method. Results showed that the DIA method tested here provided fairly good saturation distribution values in the drying and wetting processes.