• Title/Summary/Keyword: wetting test

Search Result 201, Processing Time 0.018 seconds

A Study on the Creep Characteristics of QFP Solder Joints (QFP 솔더접합부의 크립특성에 관한 연구)

  • Cho, Yun-Sung;Cho, Myung-Gi;Kim, Jong-Min;Lee, Seong-Hyuk;Shin, Young-Eui
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.151-156
    • /
    • 2007
  • In this paper, the creep characteristics of lead and lead-free solder joint were investigated using the QFP(Quad Flat Package) creep test. Two kind of solder pastes(Sn-3Ag-0.5Cu, Sn-0.2Sb-0.4Ag-37.4Pb) were applied to the QFP solder joints and each specimen was checked the external and internal failures(i.e., wetting failure, void, pin hole, poor-heel fillet) by digital microscope and X-ray inspection. The creep test was conducted at the temperatures of $100^{\circ}C$ and $130^{\circ}C$ under the load of 15$\sim$20% of average pull strength in solder joints. The creep characteristics of each solder joints were compared using the creep strain-time curve and creep strain rate-stress curves. Through the comparison, the Sn-3Ag-0.5Cu solder joints have higher creep resistance than that of Sn-0.3Sb-0.4Ag-37.4Pb. Also, the grain boundary sliding in the fracture surface and the necking of solder joint were observed by FE-SEM.

The Tensile Strength at Room Temperature of Brazing Section for Materials used for Liquid Rocket Engine Combustion Chamber (액체 로켓엔진 연소기 사용 재료의 상온 브레이징부 인장강도 특성)

  • 정용현;류철성;최민수
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.73-79
    • /
    • 2003
  • The tensile strength test and the analysis for the section of brazing were performed in the cases of materials used for combustion chamber of regeneratively cooled liquid rocket engine. BNi-2 and BNi-7 based on nickel were used for brazing as filler metal. The properties of material and filler metal were analyzed by tensile strength test and metal microscope for 12 specimens. The tensile-strength of brazing for chrome-copper alloy and other kinds of alloy was higher than that of chrome-zirconium-copper alloy and other kinds of alloy The tensile strength in the case of BNi-2 as filler metal was higher than that of BNi-7 because the wetting property of BNi-2 was better than that of BNi-7.

A Study on Hot Ductility Behavior of Ni-based Superalloys (니켈기 초내열합금의 고온연성거동에 관한 연구)

  • Lee, Choung-Rae;Um, Sang-Ho;Kim, Sung-Wook;Choi, Cheol;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.22 no.2
    • /
    • pp.59-68
    • /
    • 2004
  • Plasma transferred arc welding (PTAW) has been taken into consideration for repairing Ni-based superalloy components used gas turbine blades. Various cracks has been generally reported to be found in the base metal heat affected zone(HAZ) along grain boundary. Thus, hot cracking susceptibility of Ni-based superalloys was evaluated according to heat treatments. Hot ductility test was conducted on specimens with solution treated at 112$0^{\circ}C$ for 2 hours and aging treated at 845$^{\circ}C$ for 24hours after solution treatment. The results of the hot ductility test appeared that solution treated specimens were the highest ductility recovery rate among three conditions. The loss of ductility at high temperature in Ni-based superalloy was mainly controlled by the degree of pain boundary wetting due to constitutional liquation of MC carbide precipitates. Meanwhile, the highest ductility recovery rate in solution-treated alloys seems to be lack of M23C6, which can be dissolved during heating and then result in the local enrichment of Cr in the vicinity of the grain boundary.

Characterisrics of the Ag System Insert Metal Produced by Powder Mixing Process (분말 혼합 공정으로 만들어진 은계 삽입금속의 특성)

  • Kim, Gwang-Soo;Kim, Sang-Duck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.311-316
    • /
    • 2008
  • Powder type Ag system insert metals were manufactured by ball milling process. The variables of milling process were constant except the milling time. The milling times were selected for 24, 48 and 72 hours. The insert metals made by milling process were evaluated by performing scanning electron microscope, DSC(differential scanning calorimetry) analyses, spreading test and further in terms of wettability test. The selected insert metals that have the good characteristics compared to commercial insert metals were applied to make the brazed joints. The characterizations of those brazed joints were also conducted by microstructural observations. The results indicated that milling time of 48 hours for making powder type insert metals was the best condition showing the good spreadibility, low wetting angle. The brazed joints that applied the 48 hours milled insert metal were very sound condition indicating the stable microstructure in spite of containing small amount of porosity and the microhardness value of the joint was about 138VHN.

Characteristics of the Powder Type Ag System Insert Metals Made by Ball Milling Method and Brazed Joints (볼 밀링법으로 제조된 브레이징 삽입금속 및 접합 특성)

  • 김광수;이규도;황선효
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.47-54
    • /
    • 2002
  • Powder type Ag system insert metals were manufactured by ball milling process. The variables of milling process such as milling media, revolution speed and powder/ball weight ratio were constant except the milling time. The milling times were selected for 24, 48 and 72 hours. The insert metals made by milling process were evaluated by performing scanning electron microscope, x-ray and DSC(differential scanning calorimetry) analysis, and further in terms of wettability test. The selected insert metals that have the good characteristics compared to commercial insert metals were applied to make the brazed joints of the steel/steel and the steel/WC superhard particles. The characterizations of those brazed joints were also conducted by microstructural observations, shear tensile tests and microhardness measurements. The results indicated that milling time of 48 hours for making powder type insert metals was the best condition showing the small amount of oxides residue, low wetting angle and stable microstructure. The brazed joints that applied the 48 hours milled insert metal were very sound condition indicating the shear tensile value of $2.29{\times}102$ MPa and the microhardness of 138VHN. Further, the amount of the porosity was appeared to be lower than that of the commercial insert metals.

Performance Test for a Horizontal Regenerative Evaporative Cooler (수평형 재생증발식 냉방기의 성능시험)

  • Song, Gwi-Eun;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.621-626
    • /
    • 2006
  • Regenerative evaporative cooling is known as an environment-friendly and energy efficient cooling method. A regenerative evaporative cooler (REC) consisting of dry and wet channels is able to cool down the air stream below the inlet wet-bulb temperature. In the regenerative evaporative cooler, the cooling effect is achieved by redirecting a portion of the air flown out of the dry channel into the wet channel and spraying water onto the redirected air. In this study, a horizontal regenerative cooler is considered. In the horizontal regenerative cooler, the flow direction of evaporating water has a right angle to the flow direction of supply air. This difference was investigated with visualization technique and simplified 2-module performance test was done in a thermo-environment chamber. Optimum design configuration is changed due to the wet channel which are easily fully covered with evaporating water and block the air flow inside the channel. Applying the optimized fin configuration design with the highly wetting surface treatment, a regenerative evaporative cooler was fabricated and tested to Identify the cooling performance improvement and operation characteristics. From the experimental results at the intake condition of $32^{\circ}C$ and 50% RH, the supply temperature was measured to be around $23.4^{\circ}C$. The cooling effectiveness based on the inlet dewpoint temperature was evaluated 73% which is almost close to the design expectation.

  • PDF

Evaluation of high plasticity clay stabilization methods for resisting the environmental changes

  • Taleb, Talal;Unsever, Yesim S.
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.461-469
    • /
    • 2022
  • One of the most important factors that should be considered for using any ground improvement technique is the stability of stabilized soil and the durability of the provided solution for getting the required engineering properties. Generally, most of the earth structures that are constructed on clayey soils are exposing movements due to the long periods of drying or wetting cycles. Over time, environmental changes may result in swells or settlements for these structures. In order to mitigate this problem, this research has been performed on mixtures of high plasticity clay with traditional additives such as lime, cement and non-traditional additives such as polypropylene fiber. The purpose of the research is to assess the most appropriate ground improvement technique by using commercially available additives for resisting the developed desiccation cracks during the drying process and resisting the volume changes that may result during wet/dry cycles as an attempt to simulate the changes of environmental conditions. The results show that the fiber-reinforced samples have the lowest volumetric deformation in comparision with cement and lime stabilized samples, and the optimum fiber content is identified as 0.38%. In addition, the desiccation cracks were not visible on the samples' surface for both unreinforced and chemically stabilized samples. Regarding cracks resistance resulting from the desiccation process, it is observed, that the resistance is connected with the fiber content and increases with the increase of the fiber inclusion, and the optimum content is between 1% and 1.5%.

Effect of Bedding Layer and Clogging on Drainage Capacity of Pervious Sidewalk Block in Unsaturated Condition (노반 및 공극 막힘 현상에 따른 투수성 보도블록의 불포화 상태에서의 배수 성능에 관한 실험적 연구)

  • Seo, Dawa;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.5
    • /
    • pp.37-48
    • /
    • 2016
  • This study aims to figure out the behavior of runoff and drainage of pervious sidewalk block in actual construction environment by experiments. The specimens with surface layer and bedding layer are subjected to the drainage test by considering unsaturated condition and unique rainfall condition in urban areas. The repeated drainage test and clogging test were conducted with time intervals, and 3D X-ray CT image analysis and evaporation test were carried out for a quantitative analysis of drainage test. The results present that the spatial distribution of pores by evaporation for time intervals induces runoff. Especially, the bedding layer under the block is significantly critical in overall hydraulic behavior such as drainage and evaporation compared to the surface layer. Moreover, the sediments in pores promote the change in pores by evaporation and this induces deteriorated drainage capacity which is hard to recover. In addition, it is revealed that the maximum runoff height grows as the drainage capacity declines depending on the pre-wetting condition.

Experimental Study on Moisture Content According to Addition of Surfactants (계면활성제 첨가에 따른 함수율에 관한 실험적 연구)

  • Kim, Nam-Kyun;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.79-83
    • /
    • 2015
  • The fire accident is a representative type of disaster that can largely impact on business. Therefore, precautionary measures and rapid initial response is very important when a disaster occurs. The storage of porous combustibles is inevitable in coal yard, plywood processing industry, and others that are currently operating. Initial fire fighting of fire and identifying the ignition point in such a porous combustible storage space are so difficult that if the initial response is failed, being led to deep-seated fire, surface fire is likely to result in secondary damage. In addition, deep-seated fire can cause personal injuries and property damage due to a large amount of toxic gases and reignition. Therefore damage reduction measures is required around the storage space to handle a porous flammable. Improving the penetration performance of the concentration of the surfactant is carried out as underlying study, which is about an deep-seated fire extinguishing efficiency augmentation when using wetting agents. The porous materials used in the experiments is radiata pine wood flour, which occupies more than 75% of the domestic wood market. Fire fighting water is selected as Butyl Di Glycol (BDG), which is being used for infiltration extinguishing agent, and the experiment was carried out by producing a standard solution. The experiment was carried out on the basis of the Deep-Seated Fire Test of NFPA 18. The amount of watering, porous material to the internal amount of penetration, and runoff measurement out of the porous material was conducted. According to experimental results, as the surface tension is reduced, the surfactant concentration macroscopic penetration rate decreases, but infiltration to a porous material is shown to have growth characteristics.

Study on Characteristics of Transient Soulte Transport in the Vadose Zone by Using TDR: (2) Application (TDR(Time Domain Reflectometry)를 이용한 비포화 토양에서 천이상태의 오염원 이송확산 특성에 관한 연구 : (2) 적용)

  • Park, Jae-Hyeon;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.751-762
    • /
    • 1999
  • In this study, a 1-D laboratory experiment was conducted to investigate the characteristics of transient unsaturated solute transport by using two kinds of soils of which properties were known by test. Especially the TDR method which is proposed in this study was used to measure water content and solute concentration. As results, in the transient flow, the wetting front moves down rapidly, and the distribution of solute concentration near the wetting front showed the similar type of the water content distribution(semi-bell type). A numerical model HYDRUS was used to compare with the experimental results. Numerical results for the water movement are similar to experimental result. However, numerical results of the distribution of solute concentration are more scattered than experimental results. It means that measured dispersivity, numerical dispersion, adsorption coefficient, and soil sample size etc. should be considered in order to determine the dispersivity used in the numerical model. The present measuring method was proved to be superior to other formula and to be an available method to apply to solute transport test. The measuring error of the developed method is estimated smaller than 10% while water content is larger than 0.15.

  • PDF