• Title/Summary/Keyword: wetting properties

Search Result 268, Processing Time 0.017 seconds

The Wetting Properties of UBM-coated Si-wafer to the Lead-free Solders in Si-wafer/Bumps/Glass Flip-Chip Bonding System

  • Hong, Soon-Min;Park, Jae-Yong;Park, Chang-Bae;Jung, Jae-Pil;Kang, Choon-Sik
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.74-79
    • /
    • 2000
  • In an attempt to estimate the wetting properties of wettable metal layers by wetting balance method, an analysis of wetting curves of the coating layer was performed. Based on the analysis, wetting properties of UBM-coated Si-plate were estimated by the new wettability indices. The wetting curves of the one and both sides-coated UBM layers have the similar shape and show the similar tendency to the temperature. So the wetting property estimation of one side coating is possible with wetting balance method. For UBM of Si-chip, Cr/Cu/Au UBM is better than Ti/Ni/Au in the point of wetting time. At general reflow temperature, the wettability of high melting point solders(Sn-Sb, Sn-Ag) is better than that of few melting point ones(Sn-Bi, Sn-In).The contact angle of the one side coated plate to the solder can be calculated from the farce balance equation by measuring the static state force and the tilt angle.

  • PDF

The Fluxless Wetting Properties of UBM-Coated Si-Wafer to the Pb-Free Solders (UBM이 단면 증착된 Si-Wafer에 대한 Pb-free 솔더의 무플럭스 젖음 특성)

  • 홍순민;박재용;김문일;정재필;강춘식
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.74-82
    • /
    • 2000
  • The fluxless wetting properties of UBM-coated Si-wafer to the binary lead-free solders(Sn-Ag, Sn-Sb, Sjn-In, Sn0Bi) were estimated by wetting balance method. With the new wettability indices from the wetting curves of one side coated specimen, the wetting property estimation of UBM-coated Si-wafer was possible. For UBM of Si-chip, Au/Cu/Cr UBm was better than au/Ni/TI in the point of wetting time/ At general reflow process temperature, the wettability of high melting point solders(Sn-Sb, Sn-Ag) was better than that of low melting point one(Sn-Bi, Sn-In). The contact angle of the one side coated Si-plate to the solder could be calculated from the force balance equation by measuring the static state force and the tilt angle.

  • PDF

The Fluxless Wetting Properties of TSM-coated Glass Substrate to the Pb-free Solders (TSM(Top Surface Metallurgy)이 증착된 유리기판의 Pb-free 솔더에 대한 무플럭스 젖음 특성)

  • 홍순민;박재용;박창배;정재필;강춘식
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.2
    • /
    • pp.47-53
    • /
    • 2000
  • The fluxless wetting properties of TSM-coated glass substrate were evaluated by the wetting balance method. We could estimate the wettability of the TSM with new parameters obtained from the wetting balance test for one side-coated specimen. It was more effective in wetting to use Cu as a wetting layer and Au as a protection layer than to use Au itself as a wetting layer. The SnSb solder showed better wettability than SnAg, SnBi, and SnIn solders. The contact angle of the one side-coated glass substrate to the Pb-free solders could be calculated from the farce balance equation by measuring the static force and the tilt angle.

  • PDF

Physical Properties of Aramid and Aramid/Nylon Hybrid ATY for Protective Garments according to the Dry and Wet Texturing Conditions (건·습 텍스쳐링 가공조건이 방호의류용 Aramid ATY와 Aramid/Nylon hybrid 사의 물성에 미치는 영향)

  • Park, Mi Ra;Kim, Hyun Ah;Kim, Seung Jin
    • Fashion & Textile Research Journal
    • /
    • v.15 no.3
    • /
    • pp.444-451
    • /
    • 2013
  • This paper surveys the physical properties of aramid and aramid/nylon hybrid air-jet textured yarns(ATY) for protective garments according to wet and dry texturing conditions. Aramid and nylon filaments were used to make two kinds of para-aramid ATY and four kinds of aramid/nylon hybrid ATY with dry and wet treatments. The analyzed physical properties of six specimens (made on the ATY machine) are as follows. The tenacity and initial modulus of aramid and aramid/nylon hybrid ATY decreased with the wetting and breaking strain; however, the yarn linear density of aramid and hybrid ATY increased with wetting treatment. The dry and wet thermal shrinkage of the hybrid ATY increased with wetting. The stability of aramid and hybrid ATY also increased with wetting. The physical properties of core/effect type hybrid ATY showed significantly more change than the core type hybrid ATY and the physical properties of nylon/aramid core/effect hybrid ATY showed significantly more change than the of aramid/nylon core/effect hybrid ATY. A higher bulky and breaking strain of hybrid ATY require ATY processing conditions of nylon on the core part with wetting and aramid on the effect part. ATY processing conditions for nylon and aramid on the core part with wetting are required for a higher tenacity and modulus. ATY processing conditions of nylon and aramid on the core with no wetting are required for a low thermal shrinkage.

Wet to Shrink: an Approach to Realize Negative Expansion upon Wetting

  • Sun, L.;Huang, W.M.
    • Advanced Composite Materials
    • /
    • v.18 no.2
    • /
    • pp.95-103
    • /
    • 2009
  • Composites can be designed to have special properties, and even such properties that are difficult to find in nature. We propose a simple approach to realize negative expansion upon wetting, i.e., contraction upon wetting, using swelling materials. The key parameters in one-dimensional case are investigated, and the possible configurations for two and three-dimensional cases are presented. The feasibility is demonstrated through a simple test.

Modeling the wetting deformation behavior of rockfill dams

  • Guo, Wanli;Chen, Ge;Wu, Yingli;Wang, Junjie
    • Geomechanics and Engineering
    • /
    • v.22 no.6
    • /
    • pp.519-528
    • /
    • 2020
  • A mathematical wetting model is usually used to predict the deformation of core wall rockfill dams induced by the wetting effect. In this paper, a series of wetting triaxial tests on a rockfill was conducted using a large-sized triaxial apparatus, and the wetting deformation behavior of the rockfill was studied. The wetting strains were found to be related to the confining pressure and shear stress levels, and two empirical equations, which are regarded as the proposed mathematical wetting model, were proposed to express these properties. The stress and deformation of a core wall rockfill dam was studied by using finite element analysis and the proposed wetting model. On the one hand, the simulations of the wetting model can estimate well the observed wetting strains of the upstream rockfill of the dam, which demonstrated that the proposed wetting model is applicable to express the wetting deformation behavior of the rockfill specimen. On the other hand, the simulated additional deformation of the dam induced by the wetting effect is thought to be reasonable according to practical engineering experience, which indicates the potential of the model in dam engineering.

A Study on Wettability and Defects Behavior of Flow-soldered Joint using Low Residue Flux (저잔사 플럭스를 사용한 플로우 솔더링부의 젖음성 및 결함거동에 관한 연구)

  • 최명기;이창열;정재필;서창제;신영의
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.77-85
    • /
    • 1998
  • Effects of non-cleaning and cleaning fluxes on the wetting properties and defects at flow soldered joints were investigated. Non-cleaning flux (R-type of 3.3% solid content) and cleaning flux (RMA-type of 15% solid content) were used. Wetting test was accomplished by wetting balance method with changing surface state of wetting specimen, CU. Sn-37%Pb solder was used for wetting test and flow soldering. As experimental results, the wetting time for vertical force from the surface tension being zero was mainly affected by surface state of the wetting specimen. Non-cleaning flux had a good wettability compared with cleaning flux. In case of non-cleaning flux, conveyor speed had a great affection to defects of bridge, icicle, and poor solder.

  • PDF

Improvement of Liquid Wetting and Retention Properties of Wool Fabric in Nonionic Surfactant Solutions (비이온계 계면활성제 수용액에서 모직물의 표면적심과 액체보유력 향상)

  • Kim, Chun-Hee
    • Textile Coloration and Finishing
    • /
    • v.21 no.2
    • /
    • pp.7-13
    • /
    • 2009
  • The effects of 0.1g/dl nonionic surfactant solutions on liquid wetting and retention properties of wool fabric are reported. The 10 different nonionic surfactants (Span 20, Tween 20, 40, 60, 80, 21, 61, 81, 65, 85), wool cloth (EMPA 217), and wool soiled cloth (EMPA 107) are used in the study. Both EMPA 217 and 107 have water contact angle($\Theta$)>$90^{\circ}$, which indicates that water spreading over a fabric surface and penetration into the fabric rarely occur. However, EMPA 217 and 107 are easily wetted with perchloroethylene(PCE) having very low values of $\Theta$'s and high values of liquid retention. Water wetting properties are greatly improved by adding nonionic surfactants into the system. Generally, hydrophilic surfactants which have low number of carbon atoms or unsaturated hydrophobic structures are effective in improving water wetting of wool fabrics. The water retention of EMPA 217 and 107 in surfactant solutions have positive relations with $cos{\Theta}$, adhesion tension, and work of adhesion. 40.3% pore volume of EMPA 217 and 26.1% pore volume of EMPA 217 can be filled with water even when we assume $cos{\Theta}=1$ (${\Theta}=0^{\circ}$).

Detergency and Liquid Wetting/Retention Properties of Soiled Polyester/Cotton(65/35) Cloth in Nonionic Surfactant Solutions (비이온계 계면활성제 수용액에서 Polyester/Cotton(65/35) 오염포의 습윤특성과 세척성)

  • Kim, Chun-Hee
    • Textile Coloration and Finishing
    • /
    • v.23 no.2
    • /
    • pp.140-145
    • /
    • 2011
  • The effects of nonionic surfactant solutions of 0.1g/dL on detergency and liquid wetting/retention properties of soiled polyester/cotton(65/35) cloth were studied. Soiled polyester/cotton(65/35) cloth (EMPA 104) and 10 different nonionic surfactants (Span 20, Tween 20, 40, 60, 80, 21, 61, 81, 65, 85) were used in the study. The water retention and liquid retention capacity values of soiled cloth were decreased compared with those of unsoiled cloth. The wetting and water retention of soiled cloth improved with addition of surfactants, whereas water retention ratio(W/H) values didnot change markedly. Generally surfactants with low surface tension and high HLB (Hydrophile-lipophile balance) were more effective in improving the wetting/retention properties of soiled cloth. Nonionic surfactants having high ethylene oxide contents of 20 moles; i.e., Tween 20, 40, 60 & 80, showed better detergency than low ethylene oxide contents of 4 moles; i.e., Tween 21, 61 & 81. As HLB values of surfactants and $cos{\theta}$ of the soiled cloth increase, the detergency values of soiled cloth increased.

Characterizations of the Mechanical Properties and Wear Behavior of Ni Plate Fabricated by the Electroforming Process (Electroforming을 이용하여 제조한 Ni 기판의 기계적 특성 및 내마모 거동 분석)

  • Lee, Seung-Yi;Jang, Seok-Hern;Lee, Chang-Min;Choi, Jun-Hyuk;Joo, Jin-Ho;Lim, Jun-Hyung;Jung, Seung-Boo;Song, Keun
    • Korean Journal of Materials Research
    • /
    • v.17 no.10
    • /
    • pp.538-543
    • /
    • 2007
  • We fabricated the Ni plate by electroforming process and evaluated the microstructure, mechanical properties and wear behavior of the Ni plate. Specifically, the effects of addition of wetting agents, SF 1 and SF 2 solutions, on the microstructure and properties were investigated. The microstructure and surface morphology were characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM), respectively, and friction coefficient was measured by the ball-on-disk method. We found that the microstructure and mechanical properties of Ni plate were changed with kind and amount of wetting agents used. The hardness and tensile strength of Ni plate formed without wetting agents was 228 Hv and 660.7 MPa, respectively, whiled when wetting agent was added, those were improved to be 739 Hv and 1286.3 MPa. These improvements were probably due to the finer grain size and less crystallization of Ni. In addition, when both wetting agents were added, the friction coefficient was reduced from 0.73 to 0.67 which is partially caused by the improved hardness and smooth surface.