• Title/Summary/Keyword: wetness index

Search Result 88, Processing Time 0.024 seconds

Landslide Susceptibility Mapping Using Ensemble FR and LR models at the Inje Area, Korea (FR과 LR 앙상블 모형을 이용한 산사태 취약성 지도 제작 및 검증)

  • Kim, Jin Soo;Park, So Young
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.1
    • /
    • pp.19-27
    • /
    • 2017
  • This research was aimed to analyze landslide susceptibility and compare the prediction accuracy using ensemble frequency ratio (FR) and logistic regression at the Inje area, Korea. The landslide locations were identified with the before and after aerial photographs of landslide occurrence that were randomly selected for training (70%) and validation (30%). The total twelve landslide-related factors were elevation, slope, aspect, distance to drainage, topographic wetness index, stream power index, soil texture, soil sickness, timber age, timber diameter, timber density, and timber type. The spatial relationship between landslide occurrence and landslide-related factors was analyzed using FR and ensemble model. The produced LSI maps were validated and compared using relative operating characteristics (ROC) curve. The prediction accuracy of produced ensemble LSI map was about 2% higher than FR LSI map. The LSI map produced in this research could be used to establish land use planning and mitigate the damages caused by disaster.

GIS-based Subsidence Hazard Map in Urban Area (GIS 기반의 도심지 지반침하지도 작성 사례)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Cho, Jin-Woo;Lee, Ju-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.10
    • /
    • pp.5-14
    • /
    • 2017
  • The hazard maps for predicting collapse on natural slopes consist of a combination of topographic, hydrological, and geological factors. Topographic factors are extracted from DEM, including aspect, slope, curvature, and topographic index. Hydrological factors, such as soil drainage, stream-power index, and wetness index are most important factors for slope instability. However, most of the urban areas are located on the plains and it is difficult to apply the hazard map using the topography and hydrological factors. In order to evaluate the risk of subsidence of flat and low slope areas, soil depth and groundwater level data were collected and used as a factor for interpretation. In addition, the reliability of the hazard map was compared with the disaster history of the study area (Gangnam-gu and Yeouido district). In the disaster map of the disaster prevention agency, the urban area was mostly classified as the stable area and did not reflect the collapse history. Soil depth, drainage conditions and groundwater level obtained from boreholes were added as input data of hazard map, and disaster vulnerability increased at the location where the actual subsidence points. In the study area where damage occurred, the moderate and low grades of the vulnerability of previous hazard map were 12% and 88%, respectively. While, the improved map showed 2% high grade, moderate grade 29%, low grade 66% and very low grade 2%. These results were similar to actual damage.

Soil Water Storage and Antecedent Precipitation Index at Gwangneung Humid-Forested Hillslope (광릉 산지사면에서의 선행강우지수와 토양저류량 비교연구)

  • Gwak, Yong-Seok;Kim, Su-Jin;Lee, Eun-Hyung;Hamm, Se-Yeong;Kim, Sang-Hyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.1
    • /
    • pp.30-41
    • /
    • 2016
  • The temporal variation of soil water storage is important in hydrological modeling. In order to evaluate an antecedent wetness state, the antecedent precipitation index (API) has been used. The aim of this article is to compare observed soil water storage with APIs calculated by widely used four equations, to configure the relationship between soil water storage and API by a regression model for one-year(2009), and to predict the soil water storage for the next two years(2010~2011). The soil water storage was evaluated from the observed soil moisture dataset in soil depths of 10, 30, 60cm at 21 locations by TDR measurement system for 3 years. As a result, API with the exponential function among the four equations can describe the variation of the observed soil water storage. Monthly optimized parameters of the API's equations seemed to be roughly related with the (potential) evapotranspiration (PET). Using revised monthly optimized parameters of APIs considering the seasonal pattern of PET, we characterize the relationship between API and the observed soil water storage for one year, which looks better than those of other researches.

Spatial Distribution of Evergreen Coniferous Dead Trees in Seoraksan National Park - In the Case of Northwestern Ridge - (설악산국립공원 상록침엽수 고사목 공간분포 특성 - 서북능선 일원을 대상으로 -)

  • Kim, Jin-Won;Park, Hong-Chul;Park, Eun-Ha;Lee, Na-Yeon;Oh, Choong-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.5
    • /
    • pp.59-71
    • /
    • 2020
  • Using high-resolution stereoscopic aerial images (in 2008, 2012 and 2016), we conducted to analyze the spatial characteristics affecting evergreen coniferous die-off in the northwestern ridge (major distribution area such as Abies nephrolepis), Seoraksan National Park. The detected number of dead trees at evergreen coniferous forest (5.24㎢) was 1,223 in 2008, was 2,585 in 2012 and was 3,239 in 2016. The number of cumulated dead trees was 7,047 in 2016. In recent years, the number of dead trees increased relatively in the northwest ridge, Seoraksan National Park. Among the analysed spatial factor (altitude, aspect, slope, solar radiation and topographic wetness index), the number of dead trees was increased in the conditions with high altitude, steep slope and dry soil moisture. A spatial distribution of dead tree was divided into 2 groups largely (high altitude with high solar radiation, low altitude with steep slope). In conclusion, the dead trees of evergreen coniferous were concentrated at spatial distribution characteristics causing dryness in the northwestern ridge, Seoraksan National Park.

Analyzing the Disaster Vulnerability of Mt. Baekdusan Area Using Terrain Factors (지형 요소를 고려한 백두산 지역의 위험도 분석)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Lee, Young-Cheol;Lee, Kyu-Hwan;Kim, In-Soo
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.605-614
    • /
    • 2013
  • Most steep slope failures tend to take place in geographically unstable areas. Mt. Baekdusan is known as a potentially active volcano in a typical mountainous terrain. This study prepared a digital elevation model of Mt. Baekdusan area and created a hazard map based on topographical factors and structural lineament analysis. Factors used in vulnerability analysis included geographical data involving aspect and slope distribution, as well as contributory area of upslope, tangential gradient curvature, profile gradient curvature, and the distribution of wetness index among the elements that comprise topography. In addition, the stability analysis was conducted based on the lineament intensity map. Concerning the disaster vulnerability of Mt. Baekdusan region, the south and south west area of Mt. Baekdusan has a highest risk of disaster (grade 4-5) while the risk level decreases in the north eastern region.

Disaster Vulnerability Analysis for Steep Slope Failure (급경사지 재해도 분석)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Kim, Sang-Hyun;Park, Dug-Keun;Oh, Jeong-Rim
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.930-939
    • /
    • 2009
  • Most of steep slope failures occurring in Korea have appeared during the localized heavy rain period, whereas the evaluation model of a disaster vulnerability analysis that has been proposed to date, has been prepared in consideration only of external factors comprising geographical features. This study calculated a wetness index and a contributory area which delivers moisture to the upper slant surface during the rainfall period, and also conducted a disaster vulnerability analysis in consideration of the convergence of surface water as well as the water system created during the occurrence of rainfall by including a curvature that shows a close relevance with the shape of the minute water system that is created temporarily during the occurrence of rainfall and with the convergence and divergence of surface water. When compared with a steep slope failure occurring within a selected model district in order to verify the prepared disaster analysis, a landslide occurring in the model district had emerged in a region in which the disaster vulnerability analysis was high and the density of the minor water system was also high. If these research results are extended nationwide, it is the most effective to use a disaster vulnerability analysis and the density of the minute water system; and it is supposed to be the simplest and the most effective method for preparing a disaster analysis of mountainous land shape such as the model district.

  • PDF

Assessment of Continuous Simulations of Conceptual Ranfall-Runoff Models at Guem River Catchments, Kore (금강 유역의 개념적 강우유출모형의 장기 유출 모의 적용성 평가)

  • Chang, Hyung Joon;Lee, Hyo Sang;Ko, A Ra
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.99-99
    • /
    • 2015
  • 본 연구에서는 금강 유역을 대상으로 토양저류함수모형기반의 개념적 강우유출모형의 장기 유출모의를 평가하였다. 연구유역인 금강 22개 계측유역을 주요 유역특성인자(면적, 경사도, SCS-CN등)을 수문학적 거리 산정방법을 활용하여 3개의 유역그룹을 선정하였다. 적용모형인 개념적 강우유출모형은 3개의 토양저류함수모형[확률분포모형(PDM: Probability Distributed Moisture), 유역습윤지수모형(CWI: Catchment Wetness Index), 수정펜맨타입모형(MP: Modified Penman type model)]과 3개의 유역추적모형[병렬2선형 저류지 유출 모형(2PAR: 2-conceptual reservoirs in parallel), 빠른 지표하 흐름을 고려한 병렬 2선형 저류지 유출모형(2PMP: 2Macro-pre Approach parallel structure), 병렬 3선형 저류지 유출모형(3PAR: 3-conceptual reservoirs in parallel)]의 조합인 9개의 모형을 사용하였으며, 2006년부터 2012년의 일자료를 바탕으로 검정(Calibration), 2001년부터 2005년의 일자료를 검증(Validation)을 Monte carlo method(Uniform Random Sampling)로 수행 후, 모형의 성능은 NSE(Nash sutcliffe Efficiency)로 평가하였다. 분석결과 유역그룹에 대한 모형성능의 편차는 작아서 유역그룹에 대한 토양저류 함수모형의 뚜렷한 상관성을 확인할 수 없었다. 이는 금강 유역을 단일 유역 그룹으로 적용할 수 있음을 제시하고 있다. 검정 검증성능 및 검정매개변수의 개수를 바탕으로 적용성 평가를 실시한 결과에서 토양저류함수모형인 확률분포모형(PDM)과 유역추적모형의 병렬2선형 저류지 유출모형(2PAR)와 빠른 지표하 흐름을 고려한 병렬2선형 저류지 유출모형(2PMP)의 조합이 금강 22개 유역에서 적용성이 우수함을 확인하였다. 향후 이 모형을 바탕으로 금강유역의 대표적인 강우유출모형을 개발하고자 한다.

  • PDF

The Distribution Characteristics Analysis of Block Stream and Talus Landform by Using GIS-based Likelihood Ratio in the Honam Region (GIS 기반 우도비를 이용한 호남지역 암괴류와 애추지형의 분포 특성 분석)

  • JANG, Dong-Ho;Kim, ChanSoo
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.2
    • /
    • pp.1-14
    • /
    • 2018
  • The main objective of this paper is to classify properties of the locational environment for each debris type by calculating likelihood ratio based on the correlation between the distributions for each type of debris landform. A total of 8 thematic maps, like as elevation, slope, aspect, curvature, topographic wetness index (TWI), soil drainage, geology, and landcover including with GIS spatial information generally used in this type of debris landform analysis. The results of this study showed that the block stream had a high likelihood ratio compared to talus in areas with relatively high elevation; and concerning slope, the block stream had a high likelihood ratio in a relatively low region than talus. Concerning aspect, a clear correlation could not be analyzed for each debristype, and concerning curvature, the block stream displayed a developed slope on the more concave valley than the talus. Analysis concerning TWI, the block stream displayed a higher likelihood ratio in wider sections than talus, and concerning soil drainage, the talus and block stream both displayed a high likelihood ratio in regions with well-drained soil. The talus displayed a high likelihood ratio in the order of metamorphic rocks, sedimentary rocks, and granite, while the block stream displayed a high likelihood ratio in the order of volcanic rocks, granite, and sedimentary rocks. In addition, concerning landcover, the likelihood ratio had the most concentrated distributed compared to natural bare land only concerning talus. Based on the likelihood ratio result, it can be used as basic data for extracting the possible areas of distribution for each debris type through the GIS spatial integration method.

Analysis of Factors Influencing Landslide Occurrence along a Forest Road Near Sangsan Village, Chungju, Korea (충주시 상산마을 주변 임도 산사태의 발생 원인 분석)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.73-83
    • /
    • 2022
  • The factors influencing landslide occurrence were analyzed for six points on the upper slope and the 24 points on the lower slope along a forest road around Sangsan village in Chungju, Korea, where landslides have occurred due to heavy rainfall. In terms of physico-mechanical properties of the soil layer, the lower slope seemed to loosen owing to the higher porosity, lower unit weight, and lower friction angle compared with the upper slope. With respect to topographic characteristics, the lower slope had thicker regolith, more concave profile and plan curvatures, lower slope angles, and higher topographic wetness index values than the upper slope. Therefore, all the properties (except for the slope angle) appear to make the lower slope of the forest road more vulnerable to landslides than the upper slope. Apart from the physico-mechanical and topographic characteristics, inadequate maintenance and management of drainage facilities are also considered as further major factors influencing landslide occurrence.

Quality Characteristics and Storage Properties of Hobakpyeon with Different Amounts of Pumpkin (Cucurbita moschata D.) Powder (늙은 호박(Cucurbita moschata D.) 가루 첨가량에 따른 호박편의 품질특성 및 저장성)

  • Jung, Kyoung-Wan;Kim, Yoo-Kyung;Lee, Gui-Chu
    • Journal of the Korean Society of Food Culture
    • /
    • v.24 no.2
    • /
    • pp.191-198
    • /
    • 2009
  • The objective of this study was to investigate the effects of different amounts of pumpkin powder on the quality characteristics of hobakpyeon using physicochemical and sensory properties, as well as on its retrogradation rate during storage. As the amount of pumpkin powder increased, the following effects on the quality characteristics were observed: moisture and amylose contents decreased while protein content increased (p<0.05), and in vitro protein digestibility (IVPD) decreased (p<0.05). Levels of slowly digestible starch and resistant starch fractions increased, while the content of rapidly digestible starch decreased. The starch digestion index and rapidly available glucose content also decreased. Among the physical properties, the L-value decreased while the b-value increased (p<0.05). Texture profile analysis revealed that all textural properties except adhesiveness decreased, and presented significant differences in hardness and chewiness (p<0.05). Sensory properties such as color, flavor, and sweetness increased while others such as wetness and chewiness decreased (p<0.05). Effects on the physicochemical properties during refrigerated storage were also compared between the control and 9% hobakpyeon (9%HP). According to the results, moisture content gradually decreased in the 9%HP compared to the control. Amylose content significantly increased in 9%HP whereas no significant changes were observed in the control. In both types of hobakpyeon, IVSD decreased significantly, showing higher values in 9%HP, whereas mechanical hardness increased, showing lower values in 9%HP. The L-value decreased significantly in the 9%HP whereas no significant changes were observed in the control. In conclusion, the above results suggest that hobakpyeon with low IVSD may be obtained by the addition of 9% pumpkin powder, and also showed that pumpkin powder delayed the rate of retrogradation in 9%HP during storage.