• Title/Summary/Keyword: wetland hydrology

Search Result 32, Processing Time 0.022 seconds

Analysis of Seasonal Water Quality Variation of a Natural Wetland in the Nakdong River Basin (낙동강 수계 자연습지의 계절별 수질변화특성 분석)

  • Kim, Young Ryun;Lee, Kwang Sup;Lee, Suk Mo;Kang, Daeseok;Sung, Kijune
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.713-719
    • /
    • 2009
  • A natural wetland in the Nakdong River basin which effectively removes non-point source pollutants was investigated for 2 years to understand wetland topography, vegetation types, and water quality characteristics. The water depth of the natural wetland was in the range of 0.5~1.9 m which is suitable for the growth of non-emergent hydrophytes. The wetland has a high length to width ratio (3.3:1) and a relatively large wetland to watershed area ratio (0.057). A broad-crested weir at the outlet increases the retention time of the wetland whose hydrology is mainly dependent on storm events. The concentrations of dissolved oxygen in the growing season and the winter season showed anoxic and oxic conditions, respectively. Diurnal variations of DO and pH in the growing season were also observed due to weather change and submerged plants. COD and TP concentrations were low in the winter season due to low inflow rate and increased retention time. Increased TP concentrations in the spring season were caused by degradation of dead wetland plants. Nitrogen in the wetland was mostly in organic nitrogen form (>75%). During the growing season, ammonium concentration was high but nitrate nitrogen concentration was low, possibly due to anoxic and low pH conditions which are adverse conditions for ammonificaiton and nitrification. The results of this study can be used as preliminary data for design, operation, monitoring and management of a constructed wetland which is designed to treat diffuse pollutants in the Nakdong river watershed.

Performance of Shi-hwa Constructed Wetland for the treatment of severely polluted stream water (시화호 인공습지를 이용한 오염된 하천의 수질 정화)

  • Lee, Kyung-Do;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.615-618
    • /
    • 2003
  • A prototype of 76 ha Shi-hwa constructed wetland was constructed for the first time in Korea to purify severely polluted stream water. Hydrology, vegetation(macrophyte) and water quality for Banwol and Donghwa wetland built in Shi-hwa tidal reclaimed area were monitored to evaluate the performance of the wetlands. The overall efficiency for the treatment of polluted stream water using the wetlands showed no significant improvement. The monthly average removal rates on SS, BOD, TN and TP for Banwol and Donghwa wetlands showed 66.5% and 62.8%, 14.8 and 34.3%, 33.9 and 47.1% and 20.8 and 51.6%, respectively. It is considered that three major factors, ie. wide fluctuations in inflow rate, short hydraulic retention time and small open area compared with vegetated area could have a great influence on low system efficiency.

  • PDF

The Identification and Vegetation Structure of Several Mountainous Wetlands in Dan-yang and Around Area (단양 및 주변 산지습지의 판별 및 식생 구조)

  • Kim, Hyeong-Guk;Jeong, Jin-Yong;Koo, Bon-Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • This study was accomplished to identify and analyze vegetation structure of Mountainous Wetlands in Dan-yang and around area, and surveyed from September to November, 2006. 6 sites of total 16 potential Mountainous Wetlands by GIS based wetland forecasting system (Korea National Arboretum, 2006) were identified as wetlands throughout field survey by the indicators such as hydrology, soil and vegetation. By classification system of Korea National Arboretum (2006), types of wetlands were classified into 3 slope-types and 3 flat-types. To understand vegetation structure of wetlands, height, DBH (diameter at breast height), DI (Dominance Index), sociability and constancy were surveyed and the projection diagram and charts ware drawn. As results, Salix koreensis in woody plant layer and Persicaria thunbergiiin and Juncus effusus var. decipiens in herb layer were surveyed as broadly distributed species. The wetlands of Dan-yang around area were similar to those of Chung-ju around area, but the species of plants and hydrology conditions were different. This study is mainly focused on vegetation condition of Mountainous Wetlands. But, further studies on functional assessment for management and restoration of wetlands were necessary.

Early-Year Performance of the Sihwa Constructed Wetland for Stream Water Treatment (하천수 정화를 위한 시화인공습지의 초기 수질 정화능)

  • Kwun, Soon-Kuk;Lee, Kyung-Do;Cho, Young-Hyun;Kim, Song-Bae;Cheon, Gi-Seol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.1
    • /
    • pp.93-102
    • /
    • 2005
  • A prototype surface flow constructed wetland was built in the upstream area of Sihwa reclaimed tidal lands to improve the water quality of Lake Sihwa by treating severely polluted stream water. In this study, we monitored hydrology, macrophyte (Phragmites communis Trin,) growth, and water quality in the Banwol and Donghwa wetlands to evaluate their performance during the initial period after the completion of wetland construction, The average removal efficiency($\%$) in each wetland was relatively low compared with the performance data from the North America Wetland Treatment System Database (NADB), which mainly includes urban sewage-treatment wetlands. However, the average removal rates per unit area ($g/m^{2}/day$) were 0.72, 0.72 and 0.51 (BOD), 2,04, 2.46 and 0.70 (SS), 0.89, 0.43 and 1.09 (TN) and 0.02, 0.02 and 0.02 (TP) in the Banwol and Donghwa wetlands and NADB, respectively. The overall performance of the Banwol and Donghwa wetlands was within the expected range of the wetland system processes contributing the reduction of the pollutant load to Lake Sihwa during the initial period of wetland operation. Considering the low influent concentration, high hydraulic loading rate, and insufficient macrophyte growth since the wetland was constructed, better performance is expected if an improved operational scheme is adopted.

Germination Experiments using Natural Wetland Soil for Introducing Non-emergent Plants into a Constructed Wetland (비정수식물의 인공습지도입을 위한 자연습지토양 발아실험)

  • Yi, Yong-Min;Kang, Dae-Seok;Sung, Ki-June
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.39-48
    • /
    • 2009
  • Wetland plants are an important component for wetland design and construction because they determine functions of wetlands through interactions with the abiotic environment such as wetland soil and hydrology as well as with other wetland organisms. In this study, germination experiments with soils from a natural wetland that contain seeds of wetland plants were conducted in wetland mesocosms to investigate the applicability of natural wetland soils for introducing and establishing wetland plants into constructed wetlands. Seven species were germinated in the experiment, with two new species that were not found in the field survey of wetland plants in the West Nakdong River area, Korea. The number of plant individuals germinated in submerged conditions (15 individuals) was much greater than that in waterlogged conditions (2 individuals). In experiments in which soils from a natural wetland and a wetland construction site were mixed at different ratios, the largest number of plant individuals was observed in the condition with 100% natural wetland soil. The highest growth was observed at 50% natural wetland soil for Hydrilla verticillata and 100% for Ceratophyllum demersum. These results suggest that 1:1 mixture of soils from natural wetland wetlands and wetland construction sites would provide an appropriate condition for secure establishment of submerged plants in constructed wetlands.

  • PDF

A Study on the Improvement of Types and Grades of Forest Wetland through Correlation Analysis of Forest Wetland Evaluation Factors and Types (산림습원 가치평가 요소와 유형 및 등급의 상관성 분석을 통한 산림습원 유형 구분 및 등급의 개선 방안 연구)

  • Lee, Jong-Won;Yun, Ho-Geun;Lee, Kyu Song;An, Jong Bin
    • Korean Journal of Plant Resources
    • /
    • v.35 no.4
    • /
    • pp.471-501
    • /
    • 2022
  • This study was carried out on 455 forest wetlands of south Korea for which an inventory was established through value evaluation and grade. Correlation analysis was conducted to find out the correlation between the types and grades of forest wetlands and 23 evaluation factors in four categories: vegetation and landscape, material circulation and hydraulics·hydrology, humanities and social landscape, and disturbance level. Through the improvement of types and grades of forest wetlands, it is possible to secure basic data that can be used in setting up conservation measures by preparing standards necessary for future forest wetland conservation and restoration, and to found a systematic monitoring system. First, between the type of forest wetland and size and accessibility showed a positive correlation, but the remaining items were analyzed to have negative or no correlation. In particular, it was found that there was no negative correlation or no correlation with the grades of forest wetland. Moreover, it was found that there was a very strong negative correlation with the weighted four category items. Thus, it is judged that improvement is necessary because there is an error in the weight or adjust the evaluation criteria of the value evaluation item, add an item that can increase objectivity. Especially, in the case of forest wetlands, the ecosystem service function due to biodiversity is the largest, so evaluation items should be improved in consideration of this. Therefore, it can be divided into five categories: uniqueness and rarity (15%), wildlife habitat (15%), vegetation and landscape (35%), material cycle·hydraulic hydrology (30%), and humanities and social landscape (5%). It will be possible to propose weights that can increase effectiveness.

Ecological Assessment of Plant Succession and Water Quality in Abandoned Rice Fields

  • Byun, Chae-Ho;Kwon, Gi-Jin;Lee, Do-Won;Wojdak, Jeremy M.;Kim, Jae-Geun
    • Journal of Ecology and Environment
    • /
    • v.31 no.3
    • /
    • pp.213-223
    • /
    • 2008
  • The increasing area of abandoned rice fields could provide new opportunities for wetland restoration in Asia. However, it is unknown how quickly or completely abandoned rice fields will recover from agricultural disturbances. We assessed water quality and plant community succession in abandoned rice fields with different hydrology in a mountain valley to understand the effects of hydrological regime on recovery. Water level, soil redox potential, water quality, plant composition, and primary production were measured. The sites, coded as D6, N13, and N16, had been recovering for 6, 13, and 16 years by 2006. N13 and N16 have been recovering naturally whereas D6 has been drained with a nearby dike and was tilled in 2001. The typical hydroperiods of D6, N13, and N16 were no surface water, permanently flooded, and seasonally flooded, respectively. The major change in vegetation structure of both D6 and N13 was the replacement of herbaceous species by woody species. Drawdown accelerated this change because Salix koreensis grew better in damp conditions than in flooded conditions. Phragmites japonica reduced plot-level plant species richness. The removal efficiency of $NH_4-N$, $NO_3-N$, and $PO_4-P$ from water varied seasonally, ranging between -78.8 to 44.3%, 0 to 97.5%, and -26.0 to 44.4%, respectively. In summary, abandoned rice fields quickly became suitable habitat for native wetland plant species and improved regional water quality. Variation among our sites indicates that it is likely possible to manage abandoned rice fields, mostly through controlling hydrology, to achieve site-specific restoration goals.

Wetland Restoration Site Selection for Promoting Biodiversity in Abandoned Rice Paddy Fields - Focusing on Gounpo Ban-wol Stream Watershed - (생물다양성 증진을 위한 유휴농경지의 습지 복원 적지선정에 관한 연구 - 군포시 반월천 유역 사례로 -)

  • Lim, Yu-Ra;Kim, Kwi-Gon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.1
    • /
    • pp.52-66
    • /
    • 2009
  • The increase of rice productivity, the decrease of rice demand, aging farmers, and the market-opening of rice along with the domestic and international conditions changes have been led to the increase of the abandoned rice paddy fields. Such abandoned rice paddy fields have been left in many areas and most of them have become wetlands. The purpose of this study is methodology of selection to the wetland for development in the abandoned rice paddy fields along with surroundings. The selection of habitat suitability index assessment study to conservation and restoration was done through hydrology, wild animals habitation, wetland vegetation, outside disturbance, and natural purification capacity assessment. In addition, the same method was applied to assessment items and standards for both the restoration site selection and the type of restoration. Both assessment items and standards were applied to the sites, drawn on the maps, and overlayer for the comprehensive map, and then the wetland suitability index was applied to the suitable site. The development technique was applied to 10 sites near the Banwol Stream watershed in Gunpo, Gyeonggi province. The selection of conservation, restoration, and the optimal sites can lead to not only the biodiveristy increase in agricultural or semi natural areas but also to the establishment of ecological networks in national level.

Influences of Water Level and Vegetation Presence on Spatial Distribution of DOC and Nitrate in Wetland Sediments (수심의 정도와 식생의 유무에 따른 인공습지 토양 내 유기탄소와 질산염의 공간적 분포)

  • Seo, Ju-Young;Song, Keun-Yea;Kang, Ho-Jeong
    • Journal of Wetlands Research
    • /
    • v.12 no.2
    • /
    • pp.59-65
    • /
    • 2010
  • Wetlands are a well known ecosystem which have high spatial-temporal heterogeneity of chemical characteristics. This high heterogeneity induces diverse biogeochemical processes, such as aerobic decomposition, denitrification, and plant productivity in wetlands. Understanding the dynamics of dissolved organic carbon (DOC) and inorganic nitrogen in wetlands is important because DOC and inorganic nitrogen are main factors controlling biological processes in wetlands. In this study, we assessed spatial distribution of DOC and inorganic nitrogen with relation to the different hydrology and vegetation in created wetlands. Both DOC and nitrate contents were significantly higher in vegetated areas than open areas. Different water levels also affected DOC contents and their quality. Average DOC contents were $0.37mg{\cdot}g^{-1}$ in deep riparian (DR) and $0.31mg{\cdot}g^{-1}$ in shallow riparian (SR). These results appeared to be related to the interaction between carbon supply by vegetation and microbial decomposition. On the other hand, inorganic nitrogen contents were not affected by water level differences. This result indicates that presence/absence of vegetation could be a more important factor than hydrology in the spatial dynamics of inorganic nitrogen. In conclusion, we observed that vegetation and hydrology differences induced spatial distribution of carbon and nitrogen which are directly related to biogeochemical processes in wetlands.

Analysis on Relationships of Migratory Birds Species·Population due to Water-Ecosystem : Shinan-gun Benangkimi wetland (수생태에 따른 철새의 종·개체수 관계 분석 : 신안군 배낭기미습지)

  • Kim, Dong Hyun;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.1
    • /
    • pp.7-14
    • /
    • 2018
  • The Benangkimi wetland, which serves as a stopover place for migratory birds in the Dadohae Marine National Park in Wando-gun, Jeollanam-do, is a place where various species and a large number of migratory birds are observed. In order to provide an effective and scientific management plan for the habitat environment of migratory birds, we carried out field survey of Benangkimi wetland. The field survey and survey on habitat use of migratory birds were conducted in parallel to obtain the basic data of hydraulics and hydrology. The hydraulic and hydrological survey of Benangkimi wetland was conducted 1-2 times a year during the period of 2015-2016 (two years). It was classified into 4 sectors according to the topography and geology, rainfall, hydraulic characteristics, and wetland conditions. The 3 sectors same as the migratory birds survey sector and the 1 sector as the inflow of the wetland were analyzed. The survey also focused on small migratory birds arriving at Benangkimi wetland during the spring and autumn season. As a result of investigating the population and species in each section, the habitat environment was different according to the water depth, sediment thickness and salinity. Migratory birds prefer hydraulic and hydrological characteristics. This study will be used for the scientific management of Benangkimi wetland, which serves as a stopping point for migratory birds, and it will contribute to basic data of ecology - hydraulics by examining the relationship between habitat environment and hydrological data.