• Title/Summary/Keyword: wetland community

Search Result 207, Processing Time 0.03 seconds

Vegetation of Doombeong selected as a reference site for restoring wetland (습지 복원을 위해 하나의 대조지소로 선정된 둠벙의 식생)

  • An, Ji Hong;Lim, Chi Hong;Jung, Song Hie;Lee, Chang Seok
    • Journal of Wetlands Research
    • /
    • v.19 no.2
    • /
    • pp.193-201
    • /
    • 2017
  • This study was carried out to obtain basic ecological information required for wetland restoration in Korea where wetland is very deficient. To arrive at the objective, we collected the basic ecological information for wetland restoration in four Doombeongs located on Goesan of Chungcheongbuk-do (province), central Korea where maintains relatively integrate feature of Doombeong. Synthesized horizontal distribution of vegetation based on vegetation established naturally except that established by artificial interference, Potamogeton distinctus community, Spirodela polyrhiza community, Sagittaria aginashi community, Trapa japonica community, Scirpus triangulatus community, and Sparganium japonicum community, Persicaria thunbergii community, Juncus effusus var. decipiens community, Ludwigia prostrata community, Humulus japonicus community, Persicaria nodosa community, Miscanthus sacchariflorus community, Phragmites communis - P. japonica community, and Scirpus radicans community, S. gracilistyla community, Spiraea prunifolia for. simpliciflora community, and Rosa multiflora community, and Salix koreensis community and Acer tataricum subsp. ginnala community tended to be established in aquatic zone, herbaceous plant dominated vegetation zone, shrub dominated vegetation zone, and tree and sub-tree dominated vegetation zone, respectively. As the result of DCA ordination based on vegetation data collected from several Doombeongs and their surrounding areas, plant communities tended to be classified into aquatic, wetland, and riparian plant dominated stands. Spatial niche and species composition of major plant communities composing those stands were suggested as the reference information for creating ecological pond as a type of wetland. Further, the importance of wetland and the necessity of wetland restoration was discussed based on functions that the wetland displays.

Vegetation Structure of Hyeonchang Wetland and its Watershed in Nakdong-gang (낙동강 현창늪과 주변 분수계의 식생 구조)

  • Oh, Kyung-hwan;Son, Sung-Gon;Lee, Pal-Hong;Kim, Cheol-Soo
    • Journal of Wetlands Research
    • /
    • v.5 no.2
    • /
    • pp.43-55
    • /
    • 2003
  • Vegetation structure was investigated in the Hyeonchang wetland and its watershed around the Nakdong-gang, Changryeong-county, Gyeongsangnamdo, Korea. from May to August, 2001. The vegetation type of the Hyeonchang wetland was classified into 12 communities based on the actual vegetation map: Phragmites communis community, Zizania latifolia community, Phragmites communis - Persicaria perfoliata community, Salix koreensis community, Persicaria perfoliata - Phragmites communis community, Spirodela polyrhiza community, Persicaria perfoliata community, Cyperus amuricus community, Cyperus amuricus-EchinochJoa crus-galli var. frumentacea community, Phragmites communis-Zizania latifolia community, EchinochJoa crus-galli var. frumentacea community, and Persicaria maackiana community. Among them, Phragmites communis community was the largest (4.3 ha, 24%). The dominant vegetation type were Phragmites communis community, Echinochloa crus-galli var. frumentacea-Persicaria maackiana community, and Cyperus amuricus subcommunity based on the phytosociological method. The vegetation type of the Hyeonchang wetland watershed was classified into five communities based on the actual vegetation map: Pinus densilflora community, Pinus rigida community, Pinus densiflora-Quercus acutissima community, Pinus densiflora-Larix gmelini var. principis-ruprechtii community, and Populus tomentiglandulosa community. Among them, Distribution area of Pinus densiflora community was largest (399.3 ha, 61.8%). And the degree of green naturality of the Pinus densiflora community was 7 and 8 degree.

  • PDF

Vegetation Structure of Hwapo Wetland in Nakdong-gang (낙동강 화포습지의 식생 구조)

  • Oh, Kyung-hwan;Son, Sung-Gon;Lee, Pal-Hong;Kim, Cheol-Soo
    • Journal of Wetlands Research
    • /
    • v.5 no.2
    • /
    • pp.67-81
    • /
    • 2003
  • Vegetation structure was investigated in the Hwapo wetland around the Nakdong-gang, Gimhae-city, Gyeongsangnam-do, Korea from May to August, 2001. The vegetation type was classified into 18 communities based on the actual vegetation map: Phragmites communis community, Miscanthus sacchariflorus community, Salix nipponica community, Echinochloa crus-galli var. frumentacea community, Zizania latiofolia community, Cyperus amuricus community, Spirodela polyrhiza community, Trapa japonica community, Phragmites communis-Miscanthus sacchariflorus community, Salix nipponiaz-Misaznthus sacchariflorus community, Cyperus amuricus-Acorus calamus var. angustatus community, Salvinia natans community, Hydrilla verticillata-Spirodela polyrhiza community, Persiazria maackiana community, Trapa japonica-Salvinia natans community, Hydrilla verticillata community, Potamogeton crispus community, and Populus deltoides community. Among them, Phragmites communis community was the largest (34.9 ha, 29.53%). The dominant vegetation type was Persiazria hydropiper - Persicaria maackiana community based on the phytosociological method, and it was classified into four subcommunities: Phalaris arundinacea-Salix nipponica subcommunity, Miscanthus sacchariflorus subcommunity, Phragmites communis subcommunity, and Spirodela polyrhiza subcommunity, and Acorus calamus var. angustatus group belongs to Miscanthus sacchariflorus subcommunity.

  • PDF

Study of vascular hydrophyte vegetation and biomass in Bigumdo, Shinangun, Korea (신안군 비금도의 관속수생식물의 식생 및 생산량(Biomass)에 관한 연구)

  • Yang, Hyo-Sik
    • Journal of Wetlands Research
    • /
    • v.8 no.2
    • /
    • pp.65-74
    • /
    • 2006
  • A study of the vascular hydrophyte communities and biomass was undertaken in the Bigumdo wetlands, Shinangun, from March to November, 2005. As a result, the vegetation was divided into 14 communities. Among them, emergent hydrophytes consisted of 6 communities, including Miscanthus sacchariflorus community, Phragmites communis community, Typha angustata community, Leersia japonica community, Paspalum disticum var. indutum community, and Persicaria thunbergii community, floating hydrophytes 5 communities including Hydrocharis dubia community, Nelumbo nucifera community, Euryale ferox community, Trapa japonica community and Nymphaea tetragona var. angusta community, free-floating hydrophytes 2 commuinties including Lemna paucicostata community and Spirodela polyrhiza community, and submergent hydrophyte 1 community, including Myriophyllum verticillatum community. Biomass was the highest at emergent hydrophytes and decreased along the life form, in the order like floating hydrophytes, submergent hydrophyte and free-floating hydrophytes. In addition, hydrophytes in the Bigumdo wetland showed the typical vertical zonation pattern like a natural swamp. These results were considered that the wetland of Bigumdo was characterized by the typical structure of aquatic plant ecosystem.

  • PDF

Plant community development in the first growing season of a created mitigation wetland bank as influenced by design elements

  • Ahn, Chang-Woo
    • Journal of Ecology and Environment
    • /
    • v.33 no.4
    • /
    • pp.363-376
    • /
    • 2010
  • Vegetative communities of created wetlands often display lower species richness, less cover, higher occurrence of non-native or invasive species, and fewer obligate wetlands species than those in natural wetlands, thus failing to meet basic success criteria for wetland mitigation. This study examined the effects of two design elements, disking-induced microtopography and hydrologic regime, on the first year vegetation development pattern of a mitigation wetland newly created in the Virginia piedmont. Elevation and species cover were measured along replicate multiscale circular transects in two adjacent wetland sites that are different in their hydrologic regime. Two microtopographic indices, tortuosity (T) and limiting elevation difference (LD), were calculated from the elevation measurements. Both indices were higher in disked plots than non-disked plots, showing the effect of disking on microtopography. Out of forty-one vegetation taxa observed in the wetland, 29 taxa were naturally colonized and 12 taxa were seeded. All plots except one non-disked plot were dominated by wetland vegetation. Species richness and diversity were higher in disked than in non-disked plots. Vegetation community development seemed also influenced significantly by hydrologic regime of the site. The effect of microtopography on species richness and diversity was more pronounced in a relatively dry site compared to a wet site. In addition, percent cover, species richness and diversity of vegetation were positively correlated with microtopographic indices such as T and LD. Two design elements, microtopography and hydrologic regime, should be considered and incorporated in wetland creation to enhance plant community development.

Community Structure and Vegetation Succession Tendency of Outstanding Forest Wetlands in Goheung-gun, Jeollanam-do (전라남도 고흥군 우량 산림습원의 군락구조 및 천이경향)

  • Jun Hyuk Lee;Jeong Eun Lee;Jun Gi Byeon;Jong Bin An;Ho Jin Kim;Chung Weon Yun
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.51-61
    • /
    • 2024
  • This study was conducted to identify the community structure of two outstanding forest wetlands in Goheung-gun, Jeollanam-do, and to investigate their succession trends. vegetation survey was conducted using the Z-M phytosociological method From May to October, 2023, and based on this data, the Actual vegetation map was created by categorizing communities. This resulted in the classification of six communities. namely, Rhynchospora faberi community, Alnus japonica-Molinia japonica community, Ilex crenata-M. japonica community, M. japonica community, A. japonica-Pinus densiflora community and A. japonica community. The results of each layer's importance value (IV) analysis results indicated that in the R. faberi community, that of R. faberi, an obligate wetland plant, was high. In the subtree and shrub layers of the other five communities, A. japonica, a key species in wetland ecosystems, and Pinus densiflora and I. crenata, both obligate upland plants, exhibited higher IV. In the herb layer, the IV of M. japonica, a representative species of intermediate wetlands, was notably high. The results of classifying all observed plant species in the survey area based on their wetland preference revealed that in the R. faberi community, the occurrence rate of obligate wetland plants was high. However, in the other five communities, the occurrence rate of obligate upland plants was predominantly observed. Excluding the R. faberi community, in the other five communities constituting the outstanding forest wetlands, the occurrence rate of upland plants among the forest plants was high. It was observed that M. japonica which typically appears during the transition of wetlands to drier stages, was flourishing, indicating that the wetland was undergoing vegetation succession and terrestrialization.

Habitat Characteristics and Management of Abandoned Rice Paddy Field Wetlands in Mountain - In Case of the Uldae Wetland in Bukhansan National Park - (도시 내 묵논습지 생물서식 특성 및 관리방안 -북한산국립공원 울대습지를 대상으로-)

  • Yoo, So-Yeon;Hur, Myung-Jin;Han, Bong-Ho;Choi, Jin-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.4
    • /
    • pp.11-23
    • /
    • 2018
  • The purpose of this study is to identify the ecological characteristics and biological interactions between species of the abandoned rice paddy field in mountainous areas and to suggest a management strategy for stable food chain formation and biodiversity enhancement. The study site is located in Uldae wetland of Songchu district Bukhansan National Park, site characteristics and biological habitat characteristics were identified through site survey and literature survey. With regard to physical environment, among geographical features, the Uldae Wetland and the neighborhood inside the basin was a gently sloping area($5{\sim}15^{\circ}$). And 64.0% of basin faced the north. With regard to water environment, the Uldae Wetland was wetland of rainfed paddy field depending on precipitation and the system of stream flowing into the wetland from valley. According to the results of examining flora in plant ecology, in general, they were herbaceous wetland species. 88.6% of existing plants inside the Uldae Wetland basin was a forest in the mountain. And Quercus spp. community and Pinus densiflora community accounted for 64.6% of that, and was dominant. Except for that, Salix koreensis community was distributed. The existing vegetation of Uldae Wetland inhabited wetland species and terrestrialization indicator species, and it was thought that partial terrestrialization inside the Uldae Wetland was in progress after the discontinuation of paddy cultivation, such as the expansion of Salix koreensis distribution area. In the status of appearing faunae in the Uldae Wetland with regard to wildbirds of appearing principal species, The Uldae wetland was based on a abandoned rice paddy field various wildlife, and was a wildlife feeding, spawning, and resting place. The water environment was an important factor in maintaining the wetland living creatures function, habitat of waterbirds and benthic macroinvertebrates, amphibians and odonate are spawning ground and habitat, it was affecting the vegetation ecosystem based on wetlands. In order to maintain the diversity of wildlife, it was important to maintain smooth water supply and water level. A stable food chain will be formed and the Uldae wetland biodiversity will be abundant by establishing the relationship between the species of Uldae wetland, which is abandoned rice paddy field, and the habitat environment favored by species belonging to the ecosystem stepwise linkage. The ecological characteristics of the Uldae wetlands and the relation between the species were analyzed and the environmental conditions were reflected in the planning and management plan of Uldae wetland ecology.

Characteristics and Management Plan for the Distribution of Nelumbo nucifera community in Junam Wetland

  • Lee, Soo-Dong;Kim, Han;Cho, Bong-Gyo;Lee, Gwang-Gyu
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.5
    • /
    • pp.469-483
    • /
    • 2021
  • Background and objective: If the Nelumbo nucifera spreads in a wetland at a high density, it can have considerable positive and negative ecological effects on habitats. For this reason, it is necessary to precisely investigate the impacts of its rapid proliferation. This study was conducted to propose the distribution and management of N. nucifera, which can cause the degradation of wildlife habitats due to the rapid spread of internal and external environmental factors that may affect the Junam wetland ecosystem. Methods: For the investigation and analysis of physical and ecological characteristics, factors of the abiotic environment such as general weather conditions, topography and water depth structure, and soil and water quality analysis, and bioenvironment characteristics such as changes in the N. nucifera community distribution were evaluated. To assess whether the differences in the soil depth and physicochemical characteristics between the N. nucifera community and the aquatic plant community are statistically significant, a One-way ANOVA was executed. Results: N. nucifera was presumably introduced in approximately 2007 and observed at a prevalence of only 0.8% in 2009, but had expanded to 11.1% in 2014. After that, the area was increased to 19.3% in 2015 and 40.0% in 2017, about twice that of the previous survey year. The rapid diffusion of an N. nucifera colony can have adverse effects on wildlife habitats and biodiversity at Junam Wetland. To solve these problems, four management methods can be proposed; water level management, mowing management, installation of posts and removal of lotus roots. Control of the N. nucifera community using these methods was judged to be suitable for cutting and water level management when considering expansion rate, water level variation, and wildlife habitat impacts. Conclusion: As the biotic and abiotic environmental factors are different for each wetland, it is necessary to determine the timing and method of management through a detailed investigation.

Fish Community and Habitat Environmental Characteristics in the Gudam Wetland

  • Chu, Yeounsu;Cho, Kwang-Jin;Kim, Hui-Seong;Moon, Ho-Gyeong;Kim, Han;Choi, Nak-Hyun
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.1
    • /
    • pp.13-22
    • /
    • 2022
  • In this study, we investigated the water quality and fish community of the Gudam Wetland, a riverine wetland in the middle-upper reaches of the Nakdong River, during March-October 2020. The main results were as follows: average annual flow rate: 45.0±23.7 m3/s, flow velocity: 0.4±0.3 m/s, water depth: 1.4±0.4 m, water temperature: 17.5±0.8℃, pH: 7.8±0.2, electrical conductivity: 121.6±19.0 ㎲/cm, dissolved oxygen concentration: 11.4±0.9 mg/L, suspended solids concentration: 3.8±2.0 mg/L, and the water quality was classified as Ia (very good). A total of 754 individual fish belonging to 4 orders, 7 families, and 19 species were investigated. Cyprinidae was the dominant group, with 13 species. The dominant species was Zacco platypus (39.3%), followed by Pseudogobio esocinus (17.5%). There were 8 (42.1%) endemic Korean species and 1 exotic species, Micropterus salmoides. Four species were carnivores, six were insectivores, and nine were omnivores. Regarding tolerance to environmental changes, 6 species were tolerant, 11 had intermediate tolerance, and 2 were sensitive. Fish community analysis revealed dominance of 0.57, diversity of 2.04, evenness of 0.69, and richness of 2.72, indicating a diverse and stable fish community. The fish assessment index showed that the assessment class was B (average 62.5), which was higher than that of major streams of the Nakdong River (class C). For sustainable conservation of the Gudam Wetland, management strategies such as minimizing aggregate collection and preventing inflow of non-point pollutants are required.

Alternatives for Quantifying Wetland Carbon Emissions in the Community Land Model (CLM) for the Binbong Wetland, Korea.

  • Eva Rivas Pozo;Yeonjoo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.413-413
    • /
    • 2023
  • Wetlands are a critical component of the global carbon cycle and are essential in mitigating climate change. Accurately quantifying wetland carbon emissions is crucial for understanding and predicting the impact of wetlands on the global carbon budget. The uncertainty quantifying carbon in wetlands may comes from the ecosystem's hydrological, biochemical, and microbiological variability. The Community Land Model is a sophisticated and flexible land surface model that offers several configuration options such as energy and water fluxes, vegetation dynamics, and biogeochemical cycling, necessitating careful consideration for the alternative configurations before model implementation to develop a practical model framework. We conducted a systematic literature review, analyzing the alternatives, focusing on the carbon stock pools configurations and the parameters with significant sensitivity for carbon quantification in wetlands. In addition, we evaluated the feasibility and availability of in situ observation data necessary for validating the different alternatives. This analysis identified the most suitable option for our study site, the Binbong Wetland, in Korea.

  • PDF