• Title/Summary/Keyword: wet deposition load

Search Result 3, Processing Time 0.021 seconds

The Concentrations and Loads of Pollutant in Wet Deposition in Cheongju (습성강하물 중의 오염물질의 농도와 부하 - 충북 청주시를 중심으로-)

  • Kim, Jin-Soo;Oh, Seung-Young;Oh, Kwang-Young;Lee, Jong-Jin;Kim, Sun-Jong;Cho, Jae-Won;Khan, Jong-Bum;Jeong, Gu-Young
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.11
    • /
    • pp.959-967
    • /
    • 2004
  • The concentrations and loads of total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) in wet deposition were investigated at Chungbuk National University in Cheongju, Chungbuk. Event based precipitation samples were collected during 1998 to 2003. The precipitation-weighted mean concentrations of pollutants were 0.60 mg/L for TN, 0.014 mg/L for TP, and 4.8 mg/L for COD, which were smaller than its arithmetic mean concentrations by 26% for TN, 18% for TP, and 14% for COD. The concentrations of TN, TP, and COD significantly decreased with precipitation. Mean concentrations of pollutants in spring (March-May) were higher than in other seasons likely due to dust caused by wind erosion and sand-dust storms, pollen etc. Significant relationships were determined between TN and TP, and TN and COD. Annual loads of wet deposition averaged 7.9 kg/ha$\cdot$yr for TN, 0.19 kg/ha$\cdot$yr for TP, and 63.9 kg/ha$\cdot$yr for COD, which are almost identical to the values of TN and TP but slightly higher than COD value reported in Japan.

Estimation of Nitrogen Mass Balance in Sihwa-ho Watershed, 2010 (2010년 시화호유역 질소 물질수지 산정)

  • Choi, Jung-Kil;Lee, Hyo-Jin;Kim, Tea-ha;Choi, Jea-hun;Woo, Jun-Sik;Lee, Kang-Wung
    • Journal of Environmental Science International
    • /
    • v.27 no.3
    • /
    • pp.179-193
    • /
    • 2018
  • Nitrogen budgets in Sihwa-ho in 2010 were estimated using a mass balance approach. Major nitrogen fluxes sources can be divided into three sections: cities, agricultural area, and forest. Surplus nitrogen 2,030~2,214 ton/yr (2,123 ton/yr in average) was discharged to Sihwa Lake. 20% of the surplus nitrogen is removed from the wetland and 60% is removed tidal flats. Therefore net nitrogen discharge from Sihwa basin is estimated to be 650~708 ton/yr (679 ton/yr in average). Wet and dry nitrogen deposition and load from non-point sources ware estimated to be 97 ton/yr and 69 ton/yr, deposition is using CAMx model. So estimated total nitrogen discharge into Sihwa-ho was 817~875 ton/yr (846 ton/yr in average). The atmospheric load explains 11.1~11.9% (11.5% in average) of the total nitrogen load Sihwa-ho.

Development of Solid Lubricants for Oil-less Bush (오일리스 부시용 고체윤활제 개발)

  • Kong, Hosung;Han, Hung-Gu;Kim, Jin Uk;Kim, Kyoung Seok;Park, Jong Sik
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.87-93
    • /
    • 2019
  • This work aims to develop a dry lubricant for oilless bush, especially a solid lubricant, thereby creating a coating method with improved properties of anti-friction and load-carrying capacity without oil lubrication. In this work, spherical-shaped powders of thermosetting resin such as polyimide (PI) are mixed with a binder matrix obtained by mixing a fluorocarbon compound resin such as Polytetrafluoroethylene (PTFE) or Ethylene tetra fluoro ethylene (ETFE) with itself or with a non-fluorocarbon thermoplastic resin such as Polyether ether ketone (PEEK). And these dry lubricant mixtures are thickly coated (200-300 mm in the thickness) on the inner surface of the bush by using a wet-typed air-spray deposition method. It was found that the load-carrying capacity of the solid lubricant for excavator bush (60 mm in diameter) that operates under a high load condition (at 40 MPa) is greatly improved owing to the spherical-shaped powders of thermosetting resin. In addition, the coefficient of friction at the sliding surface is also reduced less than 0.1. Thick coating also lowers the contact stress at the edge of a bush that results in better tribological performances. The result suggests that the lubrication performance and durability life of the bush can be remarkably improved even without lubrication (oil or grease).