• Title/Summary/Keyword: wet carbonation

Search Result 26, Processing Time 0.022 seconds

Evaluation on the Performance of Nano Mixed Inorganic Repair Material for Crack Repair of Concrete Structures (콘크리트 구조물의 균열 보수를 위한 나노 합성 무기계 보수 재료의 성능 평가)

  • Kim, Jong-Pil;Jeon, Chan-Ki;Chung, Hoon;Kim, Hong-Seug
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.33-39
    • /
    • 2007
  • This paper presents a detailed experimental study on the engineering and durability properties of nano mixed inorganic repair material with rehabilitation and enhancement of performance of concrete structure occur to crack. The performance of specimens was evaluated using bond strength, chloride ion ingress, carbonation and brine resistance. It was shown in the results of the experiments that it had a superior function in the bond strength under the standard and wet-dry condition of all the repair material. Moreover, it had a good function in the experiments for chloride ion ingress, carbonation and brine resistance. Judging from the above-mentioned results, it is expected to be used for the rehabilitation and enhancement of the performance of concrete structure.

Preparation of Regenerated Cellulose Fiber via Carbonation (II) - Spinning and Characterization -

  • Oh Sang Youn;Yoo Dong Il;Shin Younsook;Kim Hak Yong;Kim Hwan Chul;Chung Yong Sik;Park Won Ho;Youk Ji Ho
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.95-102
    • /
    • 2005
  • Sodium cellulose carbonate (CC-Na) dissolved in $8.5\;wt\%$ NaOH/ZnO (100/2-3, w/w) aqueous solution was spun into some acidic coagulant systems. Diameter of regenerated cellulose fibers obtained was in the range of $15-50\;{\mu}m$. Serrated or circular cross sectional views were obtained by controlling salt concentration or acidity in the acid/salt/water coagulant systems. Velocity ratio of take-up to spinning was controlled up to 4/1 with increasing spinning velocity from 5 to 40 m/min. Skin structure of was developed at lower acidity or higher concentration of coagulants. Fineness, tenacity and elongation of the regenerated cellulose fibers were in the range of 1.5-27 denier, 1.2-2.2 g/d, and $8-11.3\;\%$, respectively. All of CC-Na and cellulose fibers spun from CC-Na exhibited cellulose II crystalline structure. Crystallinity index was increased with increasing take-up speed.

A study on the hydration of sludge from limestone washing process in a steel making factory (제철소 석회석수세슬러지의 수화반응 특성에 관한 연구)

  • Ahn, Ji-Whan;Kim, Ka-Yeoun;Kim, Hwan
    • Resources Recycling
    • /
    • v.3 no.3
    • /
    • pp.32-49
    • /
    • 1994
  • Hydration process is one of the basic carbonation system. Limestone sludge produced in Pohang Iron & Steel Co., Ltd. We tested for identify of hydration characteristics. The result obtained in this study can be summarized as follows; 1. The classify of limestone sludge is type of ground calcium carbonate(-3mm+325mesh)and the major mineral of calcite, and further more high grade(CaO 51%), fine powder(15~22$\mu\textrm{m}$). 2. Limestone sludge mixed two process sludge, first one is washing process sludge and the other one is wet collect kiln dust. The composition rate is about 8:2. Wet collect kiln dust is major mineral of calcite, too. But the sludge is assumed to one by quick lime, slaked lime and unreacted natural limestone. So, the ideal process is dividing of the washing process sludge and wet collect kiln dust. 3. We manufactured of slaked lime from limestone sludge. To investigate the effect of hydration reactor, the experiments was done with various reactor type as magnetic stirrer, shaking incubator and ultrasonic vibration reactor, respectively. Generally, ultrasonic vibration reactor is excellent hydration for limestone sludge and produced very fine slaked lime powder with ideal distribution. 4. The optimum condition is 10% pulp density, when the manufacture of fine slaked lime powder by ultrasonic vibration reactor. And hydration times to compare the results of the study with ultrasonic vibration reactor of generalized most short time(5~10 min). 5. Finally, the dispersive characteristics of slaked lime powder measured 1~5 $\mu\textrm{m}$ from limestone sludge were compared with those of natural limestone ones(10~20$\mu\textrm{m}$), in order to check applicability of slaked lime with hydration process from limestone sludge.

  • PDF

Study on the correlation between long-term exposure tests and accelerated corrosion tests by the combined damage of salts (염해 및 복합열화에 의한 부식촉진시험과 장기폭로 시험의 상관성에 관한 연구)

  • Park, Sang Soon;Lee, Min Woo
    • Corrosion Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.214-223
    • /
    • 2014
  • Interest in the durability assessment and structural performance has increased according to an increase of concrete structures in salt damage environment recent years. Reliable way ensuring the most accelerated corrosion test is a method of performing the rebar corrosion monitoring as exposed directly to the marine test site exposure. However, long-term exposure test has a disadvantage because of a long period of time. Therefore, many studies on reinforced concrete in salt damage environments have been developed as alternatives to replace this. However, accelerated corrosion test is appropriate to evaluate the critical chlorine concentration in the short term, but only accelerated test method, is not easy to get correct answer. Accuracy of correlation acceleration test depends on the period of the degree of exposure environments. Therefore, in this study, depending on the concrete mix material, by the test was performed on the basis of the composite degradation of the salt damage, and investigate the difference of corrosion initiation time of the rebar, and indoor corrosion time of the structure, of the marine environment of the actual environments were inuestigated. The correlation coefficient was derived in the experiment. Long-term exposure test was actually conducted in consideration of the exposure conditions submerged zone, splash zone and tidal zone. The accelerated corrosion tests were carried out by immersion conditions, and by the combined deterioration due to the carbonation and accelerated corrosion due to wet and dry condition.

Improvement of Durability and Change of Pore Structure for Concrete Surface by the Penetrative Surface Protection Agent (함침계 표면보호제에 의한 콘크리트 표면의 세공구조 변화 및 내구성 향상)

  • Kang, Suk-Pyo;Kim, Jung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.125-132
    • /
    • 2006
  • Recently, surface finishing and protection materials were developed to restore performance of the deteriorated concrete and inhibiting corrosion of the reinforcing-bar. For this purpose, surface protection agent as well as coatings are used. Coatings have the advantage of low Permeability of $CO_2,\;SO_2$ and water. However, for coatings such as epoxy, urethane and acryl, long-term adhesive strength is reduced and the formed membrane of those is blistered by various causes. Also when organic coatings are applied to the wet surface of concrete, those have a problem with adhesion. On the other hand, surface protection agent penetrates into pore structure in concrete through capillary and cm make a dense micro structure in concrete as a result of filling effect. Furthermore, the chemical reaction between silicate from surface protection agent and cement hydrates can also make a additional hydration product which is ideally compatible with concrete body. The aim of this study is to examine the effect of penetrative surface protection agent(SPA) by evaluating several concrete durability characteristics. The results show that the concrete penetrated surface protection agent exhibited higher durability characteristics for instance, carbonation velocity coefficient, resistance to chemical attack and chloride ion penetration than the plain concrete. These results due to formation of a discontinuous macro-pore system which inhibits deterioration factors of concrete by changed the pore structure(porosity and pore size distributions) of the concrete penetrated surface protection agent.