• Title/Summary/Keyword: welsh onion${\gamma}-ray$ radiation

Search Result 3, Processing Time 0.011 seconds

Influence of low dose ${\gamma}$ radiation on the physiology of germinative seed of vegetable crops (저선량 감마선이 채소 발아종자의 생리활성에 미치는 영향)

  • Kim, Jae-Sung;Lee, Eun-Kyung;Back, Myung-Hwa;Kim, Dong-Hee;Lee, Young-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.1
    • /
    • pp.58-61
    • /
    • 2000
  • This study was conducted to determine the effect of low dose ${\gamma}-ray$ on the germination rate and physiology of germinative seeds of welsh onion ( Allicm fistulosum L. cv. Sukchangwoidae ) and spinach ( Spinacia oleracea L. cv. Chungrok ). The germination rate of irradiation group was much higher than that of the control. Especially it was noticeably higher in 1 or 2 Gy irradiation groups in the sowing spinach seeds on paper towel. On the welsh onion, the germination rate of the 1 Gy irradiation group increased by 17% compared to that of the control. Ion leakage from seeds irradiated with low dose of ${\gamma}-ray$ was decreased compared to that from the control especially at the early stage of incubation when examined by means of electric conductance. This tendency was confirmed in seeds of welsh onion and spinach. Starch hydrolysis was stimulated by ${\gamma}-ray$ irradiation in welsh onion. Furthermore ${\gamma}-ray$ irradiation was beneficial to keeping the vitality of seeds as determined through decarboxylation of glutamic acid.

  • PDF

The Acceleration of Germination in Welsh Onion Seed Irradiated with the Low Dose ${\gamma}-ray$ Radiation (저선량 감마선 조사가 파종자의 발아에 비치는 영향)

  • Lee, Eun-Kyung;Kim, Jae-Sung;Lee, Young-Keun;Lee, Young-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.4
    • /
    • pp.346-351
    • /
    • 1998
  • To investigate the hormetic effects of the low dose ${\gamma}-ray$ radiation on the germination rate, Welsh onion (Allium fistulosum L. cv. Eunchun and cv. Sukchangwoidae) seeds were irradiated at the dose of $0.5\;{\sim}24.0$ Gy with the ${\gamma}-ray$ radiation (Co-60). The germination rate of 'Eunchun' cultivar increased about 10% in the low dose ${\gamma}-ray$ irradiation group compared with that of the control. In the 'Sukchangwoidae' cultivar, the germination rate of the 4 Gy irradiation group increased 40% more than that of the control. Broadly, it seemed that the hormetic effects of the low-dose ${\gamma}-ray$ radiation were taken more promisingly in the uncultivated soil than in the fertile soil. The germination rate from the paper towel and filter paper based cultivation increased 10% and 16% more, respectively, in the 1 Gy irradiation group than that in the control group. And the electric conductivities of the above groups supposed to be taken hormetic effects of the ${\gamma}-ray$ radiation were lower than those of the control group. From the above results, it is suggested that the low dose ${\gamma}-ray$ radiation ranged from 1 Gy to 10 Gy could have the hormetic effects on the germination rate related characters in Welsh onion seeds.

  • PDF

Comparison of Three Radiation Sources on Quality Properties of Three Dried Condiments (건조 향신료 3종에 대한 방사선종별 조사효과 비교)

  • Park, Kyung-Sook
    • Journal of Radiation Industry
    • /
    • v.8 no.2
    • /
    • pp.83-88
    • /
    • 2014
  • Application of X-ray irradiation of dried condiments was studied using commercially prepared dried garlic, onion and welsh onion flakes as model samples. Total load of aerobic microbes (TAM), color differences, and generation of off-flavor were quantified for samples individually irradiated with gamma rays, electrons, or X-rays. TAM load was decreased by irradiation in a dose-dependent manner. The three types of radiation did not differ in the extent of TAM reduction (P>0.05). The samples did not differ in color. Off-flavor was detected from 6 kGy-irradiated samples, regardless of radiation sources. The results indicated that X-ray irradiation could be used for irradiation of dried condiments with the same effects as gamma rays and an electron beam.