• Title/Summary/Keyword: well-plate changing

Search Result 22, Processing Time 0.016 seconds

Ecological Evolution by Competitive Exclusion / An Experimental Approach with Cellular Slime Mold , Polysphondylium pallidum (경쟁배타에 의한 생태적 진화: 세포성 점균 Polysphondylium pallidum에 대한 실험적 접근)

  • ;Robert M. Eisenberg
    • The Korean Journal of Ecology
    • /
    • v.17 no.3
    • /
    • pp.299-310
    • /
    • 1994
  • Intraspecific clonal interactions have important influences on a population structure of the cellular slime mold (CSM). This study was to investigate whether or not evolutionary change in a population could be induced by clonal competition, and to elucidate how various clones in a population evolve in a homogeneous environment of laboratory culture. The characteristic clones of Polysphondylium pallidum which had different resource consumption rates (RCR) and mating types I and II were selected for study. Investigation was conducted for 4 experimental time interval $(T_0-T_4)$; one experimental time interval took almost 10-14 days from inoculation to havest of fruiting bodies. Two sets of 50 clones were cultured from 50 clones at To, and RCR variations of the population were compared between $(T_0\;and\;T_4)$ for each set of clones. Each clone of the CSM had a diverse resource consumption rate, or growth rate, in a homogeneous and limited Cerophyl agar plate despite the passage of 48-56 generations from the beginning of the experiment. Diverse clones with different growth rate could coexist in one site of the homogeneous agar plate as well as heterogeneous soil microenvironment. When there was high clonal diversity of RCR, a clone in a population had high chances to encounter other clones with resultant increased clonal competition. In one set, 26 of 37 clones of mating type I were changed to mating type Il for the 4 experimental time intervals, which indicated that the rate of competitive exclusion among clones during total experiment from $(T_0\;to\;T_4)$ was 0.703. In another set, 31 of 37 clones of mating type I were changed to mating type II , having the rate of competitive exclusion 0.838. The frequency of each of mat~ng types changed by 0.93-1.29% in each successive generation. The competitive exclusion among clones occurred by 1.26-1.75% when approximately $2.6{\times}10^8$ bacterial cells were provided as food and thereafter one generation of myxamoebae of CSM elapsed at room temperature. This finding implicated that in the vegetative state of P, pallidurn there was 1.26-1.75% probabil~ty of evolutionary change per generation changing from one clone to another clone.

  • PDF

A Computer Simulation for Small Animal Iodine-125 SPECT Development (소동물 Iodine-125 SPECT 개발을 위한 컴퓨터 시뮬레이션)

  • Jung, Jin-Ho;Choi, Yong;Chung, Yong-Hyun;Song, Tae-Yong;Jeong, Myung-Hwan;Hong, Key-Jo;Min, Byung-Jun;Choe, Yearn-Seong;Lee, Kyung-Han;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.1
    • /
    • pp.74-84
    • /
    • 2004
  • Purpose: Since I-125 emits low energy (27-35 keV) radiation, thinner crystal and collimator could be employed and, hence, it is favorable to obtain high quality images. The purpose of this study was to derive the optimized parameters of I-125 SPECT using a new simulation tool, GATE (Geant4 Application for Tomographic Emission). Materials and Methods: To validate the simulation method, gamma camera developed by Weisenberger et al. was modeled. Nal(T1) plate crystal was used and its thickness was determined by calculating detection efficiency. Spatial resolution and sensitivity curves were estimated by changing variable parameters for parallel-hole and pinhole collimator. Peformances of I-125 SPECT equipped with the optimal collimator were also estimated. Results: in the validation study, simulations were found to agree well with experimental measurements in spatial resolution (4%) and sensitivity (3%). In order to acquire 98% gamma ray detection efficiency, Nal(T1) thickness was determined to be 1 mm. Hole diameter (mm), length (mm) and shape were chosen to be 0.2:5:square and 0.5:10:hexagonal for high resolution (HR) and general purpose (GP) parallel-hole collimator, respectively. Hole diameter, channel height and acceptance angle of pinhole (PH) collimator were determined to be 0.25 mm, 0.1 mm and 90 degree. The spatial resolutions of reconstructed image of the I-125 SPECT employing HR:GP:PH were 1.2:1.7:0.8 mm. The sensitivities of HR:GP:PH were 39.7:71.9:5.5 cps/MBq. Conclusion: The optimal crystal and collimator parameters for I-125 Imaging were derived by simulation using GATE. The results indicate that excellent resolution and sensitivity imaging is feasible using I-125 SPECT.