• 제목/요약/키워드: well pumping

검색결과 364건 처리시간 0.023초

Koreanized Analysis System Development for Groundwater Flow Interpretation (지하수유동해석을 위한 한국형 분석시스템의 개발)

  • Choi, Yun-Yeong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • 제3권3호
    • /
    • pp.151-163
    • /
    • 2003
  • In this study, the algorithm of groundwater flow process was established for koreanized groundwater program development dealing with the geographic and geologic conditions of the aquifer have dynamic behaviour in groundwater flow system. All the input data settings of the 3-DFM model which is developed in this study are organized in Korean, and the model contains help function for each input data. Thus, it is designed to get detailed information about each input parameter when the mouse pointer is placed on the corresponding input parameter. This model also is designed to easily specify the geologic boundary condition for each stratum or initial head data in the work sheet. In addition, this model is designed to display boxes for input parameter writing for each analysis condition so that the setting for each parameter is not so complicated as existing MODFLOW is when steady and unsteady flow analysis are performed as well as the analysis for the characteristics of each stratum. Descriptions for input data are displayed on the right side of the window while the analysis results are displayed on the left side as well as the TXT file for this results is available to see. The model developed in this study is a numerical model using finite differential method, and the applicability of the model was examined by comparing and analyzing observed and simulated groundwater heads computed by the application of real recharge amount and the estimation of parameters. The 3-DFM model is applied in this study to Sehwa-ri, and Songdang-ri area, Jeju, Korea for analysis of groundwater flow system according to pumping, and obtained the results that the observed and computed groundwater head were almost in accordance with each other showing the range of 0.03 - 0.07 error percent. It is analyzed that the groundwater flow distributed evenly from Nopen-orum and Munseogi-orum to Wolang-bong, Yongnuni-orum, and Songja-bong through the computation of equipotentials and velocity vector using the analysis result of simulation which was performed before the pumping started in the study area. These analysis results show the accordance with MODFLOW's.

Analysis of Groundwater Flow Characterization in Fractured Aquifer System (파쇄대 응회암 대수층의 지하수 유동 특성화 기법)

  • Kim Yong-Je;Kim Tae-Hee;Kim Kue-Young;Hwang Se-Ho;Chae Byung-Gon
    • Journal of Soil and Groundwater Environment
    • /
    • 제10권4호
    • /
    • pp.33-44
    • /
    • 2005
  • On the basis of a stepwise and careful integration of various field and laboratory methods the analysis of groundwater flow characterization was performed with five boreholes (BH-1, -2, -3, -4, -5) on a pilot site of Natural Forest Park in Guemsan-gun, Chungcheongbook-do, Korea. The regional lineaments of NW-SE are primarily developed on the area, which results in the development of many fractures of NW-SE direction around boreholes made in the test site for the study. A series of surface geological survey, core logging, geophysical logging, tomography, tracer tests, and heat-pulse flowmeter logging were carried out to determine fracture characteristics and fracture connectivity between the boreholes. In the result of fracture connectivity analysis BH-1 the injection well has a poor connectivity with BH-2 and BH-3, whereas a good with BH-4 and BH-5. In order to analyse the hydraulic connectivity between BH-1 and BH-5, in particular, a conspicuous groundwater outflux in the depth of 12 m and influx in the depth of 65 m and 70 m, but partly in/outflux occurred in other depths in BH-5 were observed as pumping from BH-1. On the other hand, when pumping from BH-5 the strong outflux in the depths of 17 m and 70 m was occurred. The spatial connectivity between the boreholes was examined in the depth of 15 m, 67 m, and 71 m in BH-1 as well as in the depth of 15 m, 17 m, 22 m, 72 m, and 83 m in BH-5.

Present Status and Future Improvements in Groundwater Use Near Streams in the Anseongcheon watershed, Korea (하천 인근 지하수 이용 현황 및 관리 개선방향에 관한 연구)

  • Chung, Il-Moon;Hong, Sung Hun;Lee, Jeongwoo;Kim, Min Gyu
    • The Journal of Engineering Geology
    • /
    • 제27권4호
    • /
    • pp.383-392
    • /
    • 2017
  • Excessive abstraction of groundwater near streams for agricultural, domestic, or industrial use can significantly reduce the streamflow. Therefore, proper management of water resources must involve careful monitoring of groundwater use near streams. This study investigates the current status of groundwater intake plans in the Anseongcheon watershed, Korea, in order to understand the portion of groundwater wells according to distance from the stream and the distribution of wells near the stream. Among all the wells in the watershed, 20.5% were permitted and 31.3% were declared within 300m from the stream. In particular, among the wells located near streams, 11.4% were permitted and 88.6% were declared among the wells near streams. Therefore, the total amount of groundwater pumping rates from the declared wells is much higher than that from the permitted wells near the stream. Under current guidelines, investigations of the impact of groundwater use near a stream on streamflow depletion should only consider wells permitted by groundwater law. However, prudent management should also pay attention to declared wells, given their large number.

Design and Fabrication of Reflection-type Pump LD Protection Filters for High Power Fiber Lasers by Using Ta2O5/SiO2 Thin Films (Ta2O5/SiO2를 이용한 고출력 광섬유 레이저의 펌프 LD 보호기용 반사형 필터 설계 및 제작)

  • Sung, Hamin;Kim, Jae Hun;Lee, Seok;Jhon, Young Min
    • Korean Journal of Optics and Photonics
    • /
    • 제23권3호
    • /
    • pp.124-127
    • /
    • 2012
  • We designed and fabricated dichroic filters for high-power fiber lasers to protect the pumping laser diode from counterpropagating laser beams. The transmittance at laser diode wavelengths of 905 nm~925 nm was designed to be less than 0.1% and the transmittance at the fiber laser or Brillouin scattering wavelengths of 1020 nm ~ 1100 nm was designed to be more than 99.9%. Since oxide materials have good adhesion to the $SiO_2$ substrate, $SiO_2/Ta_2O_5$ were used as coating materials. The filter was fabricated according to our optimized design and its characteristics were compared with the theoretical design. As a result, the transmittance at laser diode wavelengths of 905 nm~925 nm was measured to be less than 0.1%, and the transmittance at the fiber laser or Brillouin scattering wavelengths of 1020 nm~1100 nm was measured to be more than 95.5%, which coincided well with the theoretical design considering processing errors. The filter was found to operate well over 1W of input laser power.

Construction and Tests of the Vacuum Pumping System for KSTAR Current Feeder System (KSTAR 전류전송계통 진공배기계 구축 및 시운전)

  • Woo, I.S.;Song, N.H.;Lee, Y.J.;Kwag, S.W.;Bang, E.N.;Lee, K.S.;Kim, J.S.;Jang, Y.B.;Park, H.T.;Hong, Jae-Sik;Park, Y.M.;Kim, Y.S.;Choi, C.H.
    • Journal of the Korean Vacuum Society
    • /
    • 제16권6호
    • /
    • pp.483-488
    • /
    • 2007
  • Current feeder system (CFS) for Korea superconducting tokamak advanced research(KSTAR) project plays a role to interconnect magnet power supply (MPS) and superconducting (SC) magnets through the normal bus-bar at the room temperature(300 K) environment and the SC bus-line at the low temperature (4.5 K) environment. It is divided by two systems, i.e., toroidal field system which operates at 35 kA DC currents and poloidal field system wherein 20$\sim$26 kA pulsed currents are applied during 350 s transient time. Aside from the vacuum system of main cryostat, an independent vacuum system was constructed for the CFS in which a roughing system is consisted by a rotary and a mechanical booster pump and a high vacuum system is developed by four cryo-pumps with one dry pump as a backing pump. A self interlock and its control system, and a supervisory interlock and its control system are also established for the operational reliability as well. The entire CFS was completely tested including the reliability of local/supervisory control/interlock, helium gas leakage, vacuum pressure, and so on.

Evaluation of Long-term Data Obtained from Seawater Intrusion Monitoring Network using Variation Type Analysis (변동유형 분석법을 이용한 해수침투 관측망 자료 평가)

  • Song, Sung-Ho;Lee, Jin-Yong;Yi, Myeong-Jae
    • Journal of the Korean earth science society
    • /
    • 제28권4호
    • /
    • pp.478-490
    • /
    • 2007
  • With groundwater data of seawater intrusion monitoring network in coastal areas of Korea's main land, we analyzed types of seawater intrusion through the coastal aquifer. The data including groundwater level, temperature and electrical conductivity obtained from 45 monitoring wells at 25 watershed regions were evaluated. Based on statistical analysis, correlation analysis and variation type analysis, groundwater levels were mainly affected by rainfall and artificial pumping. About 78% of the monitoring wells showed average temperature higher than $15^{\circ}C$ and about 58% of them showed minimum variations less than $0.2^{\circ}C$. Electrical conductivities showed a large magnitude of variation and irregular characteristics compared with groundwater levels and temperatures. Average electrical conductivities lower than $2,000\;{\mu}S/cm$ were observed at 28 monitoring wells while those of higher than $10,000\;{\mu}S/cm$ were done at 9 monitoring wells. From the cross-correlation analysis, groundwater levels were mostly affected by precipitation while temperature and electrical conductivity showed very low correlation. Meanwhile tidal variations strongly affected the groundwater levels comparing to precipitation. We classified the long-term monitoring data according to variation types such as constant process, linear trend, cyclic variation, impulse, step function and ramp. Impulse type was dominant for variations of groundwater level, which was largely affected by rainfall or artificial pumping, the constant process was dominant for temperature. Compared with groundwater level and temperature, electrical conductivities showed various types like linear trend, step function and ramp. According to the discrepancy of variation characteristics for monitoring data at each well in the same region, periodical analysis of monitoring data is essentially required.

The Study on the Increased Causes of Chloride ($Cl^{-}$) Concentration of the Samyang 3rd Pumping Station in Cheju Island (제주도 삼양 3수원지의 염소이온농도 상승 원인에 관한 연구)

  • 이성복;김구영;한소라;한정상
    • Journal of the Korean Society of Groundwater Environment
    • /
    • 제4권2호
    • /
    • pp.85-94
    • /
    • 1997
  • The study is aimed to find out the causes of rapidly increasing chloride (Cl$^{-}$) concentration of the Samyang 3rd pumping station originated from coastal springs of Cheju since January 1996. The study results show that it was caused by following complicated natural and anthropogenic effects. Due to severe draught in 1996 with total rainfall of only 41.7% of annual mean of the last 36 years (1991 to 1995), it creates firstly), significant decrease of the spring discharges as well decline of the groundwater level at the site . Sea water level was in general 4.4 cm to 12.4 cm higher than the groundwater level of the site during 2 to 3.8 hours at each high tide. Those higher potential head of sea water motivates the sea water intrusion into the fresh water lens through the permeable clinkers and fracture zones situated beneath the existing grouted zone which was installed to a maximum 10 m below the ground water surface, The repeated expansion and contraction of the fresh water lens occurred by periodic changes of the sea water level at high and low tide accelerates secondly the enlargement of the transition zone between the fresh and sea water at the site. The decrease of recharge amount by rainfall shortage creates thirdly the reverse flow at the interface of sea water and groundwater. The repeated groundwater extraction of 2790${\pm}$450 $m^3$d$^{-1}$ at the time of low tide, when the fresh water lens of the sire is under the contraction stare, makes additional drawdown of the ground water level and induces the upconing of salt water into the fresh water lens. The duration of spring discharge whose Cl concentration is less than 150 mg/1 at the low tide measured at the nearby springs was about two hours with discharge rate of 532 $m^3$d$^{-1}$ and after that Cl$^{-}$ concentration is increased up to more than 1900 mg/ι.eased up to more than 1900 mg/L.

  • PDF

Seasonal Variations of EWT and COP of GWHP System Using the Bank Infilterated Water from Stream-Alluvial Aquifer System (하천-충적대수층계의 강변여과수를 열원으로 이용하는 지하수 열펌프 시스템의 계절별 입구온도와 효율성 평가)

  • Hahn, Chan;Jeon, Jae-Soo;Yoon, Yoon-Sang;Han, Hyok-Sang;Hahn, Jeong-Sang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • 제3권2호
    • /
    • pp.39-51
    • /
    • 2007
  • Unconsolidated and permeable alluvial deposit composed of sand and gravel is distributed along the fluvial plain at the Iryong study area. Previous studies on the area show that a single alluvial well can produce at least 1,650m3d-1 of bank infilterated shallow groundwater(BIGW) from the deposit. This study is aimed to evaluate and simulate the influence that seasonal variation of water levels and temperatures of the river have an effect on those of BIGW under the pumping condition and also to compare seasonal variation of COPs when indirectly pumped BIGW or directly pumped surface water are used for a water to water heat pump system as an heat source and sink using 3 D flow and heat transport model of Feflow. The result shows that the magnitude influenced to water level of BIGW by fluctuation of river water level in summer and winter is about 48% and 75% of Nakdong river water level separately. Seasonal change of river water temperature is about $23.7^{\circ}C$, on other hand that of BIGW is only $3.8^{\circ}C$. The seasonal temperatures of BIGW are ranged from minimum $14.5^{\circ}C$ in cold winter(January) and maximum $18.3^{\circ}C$ in hot summer(July). It stands for that BIGW is a good source of heat energy for heating and cooling system owing to maintaining quite similar temperature($16^{\circ}C$) of background shallow groundwater. Average COPh in winter time and COPc in summer time of BIGW and surface water are estimated about 3.95, 3.5, and about 6.16 and 4.81 respectively. It clearly indicates that coefficient of performance of heat pump system using BIGW are higher than 12.9% in winter time and 28.1% in summer time in comparision with those of surface water.

  • PDF

Designing a Decentralized Stormwater Management Corridor for a Flood-Prone Watershed using Surface Runoff Analysis (지표유출수 분석을 통한 상습침수유역의 분산식 우수관리통로 설계)

  • Lee, Seul;Lee, Yumi
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • 제43권3호
    • /
    • pp.13-26
    • /
    • 2015
  • Many urban areas in Korea suffer from repeated flood damage during intensive rainfall due to an increase in impervious areas caused by rapid urbanization and deteriorating sewage systems. A centralized stormwater management system has caused severe flood damage in an area that has proven unable to accommodate recent climate change and a rise in precipitation. Most flooding prevention projects that have been recently implemented focus on increasing drainage system capacity by expanding the size of sewer pipes and adding pumping stations in downstream areas. However, such measures fail to provide sustainable solutions since they cannot solve fundamental problems to reduce surface runoff caused by urbanization across the watershed. A decentralized stormwater management system is needed that can minimize surface runoff and maximize localized retention capacity, while maintaining the existing drainage systems. This study proposes a stormwater management corridor for the flood-prone watershed in the city of Dongducheon. The corridor would connect the upstream, midstream, and downstream zones using various methods for reducing stormwater runoff. The research analyzed surface runoff patterns generated across the watershed using the Modified Rational Method considering the natural topography, land cover, and soil characteristics of each sub-watershed, as well as the urban fabric and land use. The expected effects of the design were verified by the retainable volume of stormwater runoff as based on the design application. The results suggest that an open space network serve as an urban green infrastructure, potentially expanding the functional and scenic values of the landscape. This method is more sustainable and effective than an engineering-based one, and can be applied to sustainable planning and management in flood-prone urban areas.

Study on Applicability of Simultaneous Multiple Compaction Grouting Method in Soft Clay Ground (점성토 연약지반에서의 다중 동시주입 컴팩션 그라우팅 공법 적용성 연구)

  • Lee, Hyobum;Jung, Hyun-Seok;Jung, Eui-Youp;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제39권6호
    • /
    • pp.779-788
    • /
    • 2019
  • The compaction grouting method is one of the conventional ground improvement methods, which consolidates and compacts the surrounding ground through the injection of grout materials with low mobility. Injecting the grout into the ground can improve the soil properties, as well as form a composite of soil-grout columns. However, the conventional grout pumping is not applicable to handle multiple injection holes at the same time, which may diminish its constructability when the construction time is not enough. This paper proposes a simultaneous multiple compaction-grouting method using a new pump system developed to cover up simultaneously three injection holes at a time. Field injection tests with a single injection hole and with triangular arrangement of injection holes were conducted to evaluate the applicability of the proposed method to soft clay ground. In addition, a series of standard penetration tests (SPTs) were performed to assess the efficiency of each arrangement in improving the soft ground. It is noted from the in-situ test results that the interval distances between injection holes and the elapse time for ground stabilization are the crucial factors governing the applicability of the simultaneous multiple compaction-grouting method to improve the soft clay ground.