• Title/Summary/Keyword: welding test

Search Result 1,447, Processing Time 0.023 seconds

A study for CD stud welding of Magnesium alloy for electric device case (전자기기 케이스를 위한 마그네슘 판재 스터드 용접 기술에 관한 연구)

  • Lee, Mok-Yeong;Ryu, Chung-Seon;Jang, Ung-Seong;Choe, Sang-Un
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.53-56
    • /
    • 2007
  • Magnesium sheet used in electrical device due to mobility and EMF shielding characteristics. Magnesium case by press forming was advantageous compare with conventional die casting process, because of its thin gauge of wall and surface quality. But it need to makes the boss to fix inner part or assemble the case. CD stud welding was effective way for joining the boss to the thin gauge case of the electrical devices. In this study, we investigated the performances of the magnesium boss welder To measure the process parameters such as the force and the weld current, we design the monitoring system for CD stud welding. We test the characteristics of CD stud welding for AZ31 sheets at some variables. Finally we select the optimum welding range of magnesium sheets in CD stud welding process.

  • PDF

Friction Welding Optimization of Hot Die Punch Materials and Its AE Evaluation (열간 금형재의 마찰용접 최적화와 AE평가)

  • Oh, S.K.;Kong, Y.S.;Park, I.D.;Yoo, I.J.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.54-58
    • /
    • 2000
  • The complete joining method for dissimilar hot die punch materials and its real-time evaluation method are not available at present. Brazing method has been used for joining them, but it is known that the welded joint by the brazing has the lower bonding efficiency and reliability than the diffusion welding. The friction welding with a diffusion mechanism in bonding was applied in this study. So, this work was carried out to determine the optimal friction welding conditions and to analyze mechanical properties of friction welded joints of hot die punch materials (STD61 for the blade part of hot die punch) to alloy steel (SCM440 for the shank part of hot die punch) such as plunger. In addition, acoustic emission test was carried out during friction welding to evaluate the weld quality.

  • PDF

Evaluation of Friction Spot Joining Weldability of Al Alloys for Automotive (마찰교반 점용접(FSJ)을 이용한 자동차용 Al 합금의 접합성 평가)

  • Cho, Hyeon-Jin;Kim, Heung-Ju;Cheon, Chang-Keun;Chang, Woong-Seong;Bang, Kook-Soo
    • Journal of Welding and Joining
    • /
    • v.24 no.1
    • /
    • pp.50-55
    • /
    • 2006
  • In an attempt to optimize friction spot joining process of Al alloys for automobiles, effects of joining parameters such as tool rotating speed, plunging depth, and joining time on the joints properties were investigated. A wide range of joining conditions could be applied to join Al alloys for automobile without defects in the weld zone except for certain welding conditions with a lower heat input. For sound joints without defects, tensile shear strength of joints was higher than acceptable criteria of tensile shear strength of resistance spot welded joints for aluminum.

Failure analyses of friction welded Al/Cu joints (Al/Cu 마찰용접부의 파단분석)

  • 박재현;권영각;장래웅
    • Journal of Welding and Joining
    • /
    • v.12 no.1
    • /
    • pp.80-93
    • /
    • 1994
  • The microstructure and fractography of the friction welded joint of Al to Cu have been investigated in order to understand the formation of intermetallic compounds and their effects on the failure in tensile test of the joint. The variation of welding pressure did not affect significantly the tensile strength of joint. However, the tensile strength of joint decreaed as welding time increased. The thickness of reaction layers of welded joints was several micro-meters and mainly composed of intermetallic compounds of $CuAl_2$, $Cu_9Al_4$ and Al+$CuAl_2$. The thickness of $CuAl_2$, $Cu_9Al_4$ was increased with welding time. However, $CuAl_2$ was gradually changed to $Cu_9Al_4$ which caused the decrease of tensile strength . Even though the morphology of fractured surfaces depended upon the welding time, the failure occurred along $CuAl_2$ intermetallic compound itself or between $CuAl_2$ and $Cu_9Al_4$ in most cases.

  • PDF

A Study on the Mechanical Properties of Structural Steels by Welding at High Temperature (용접한 건축구조용 강재의 고온 시 기계적 특성에 관한 연구)

  • Cho, Bum-Yean;Jee, NamYong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.161-164
    • /
    • 2009
  • This research is to show the mechanical properties of structural steels by welding at high temperature. Welding parts are divided with weld metal and HAZ(Heat Affected Zone). HAZ is formed by interval from welding heat source and heating and cooling rates. Then, the change of both microstructure and mechanical properties occurs. Discontinuity of mechanical and chemical property at HAZ is the cause of safety decrease of structure. At this point, in this research, tensile tests at high temperature with test pieces of base metal and weld metal of SS400 and SM490 are accomplished. From the results, the mechanical properties of both SS400 and SM490 are standardized without welding or non-welding.

  • PDF

A Development of Optimizing Tools for Friction Stir Welding with 2 mm Thick Aluminum Alloy using a Milling Machine (밀링을 이용한 AI합금의 마찰 교반용접용 최적공구형상 및 치수개발에 관한 연구)

  • 장석기;신상현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.791-796
    • /
    • 2001
  • Friction stir welding is a solid phase welding process that does not melt the metal when welding. The FSW is the most remarkable and potentially useful new welding technique that is still in development. Friction stir butt welding process on 2 mm thick Al 1050 plates by utilizing a milling machine was experimentally studied. With the optimized heat generating tool welds could be achieved that are void and crack free. It was found that the friction stir welded tensile test specimens failed in the HAZ outside of the weld metal, and that the tensile strength was above 90% of that of the base metal.

  • PDF

Effect of Circumferential Tool Path Control on Friction Stir Spot Welding of Al/Fe Dissimilar Metal Joint (툴 경로제어를 이용한 Al/Fe 이종금속 마찰교반점용접 공정특성 평가)

  • Yoon, Jin Young;Kim, Cheolhee;Rhee, Sehun
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.6-11
    • /
    • 2016
  • Joining Al/Fe dissimilar metals is becoming a subject of special interest in the assembly of automotive parts as a trade-off between the weight lightening and the cost reduction. Although various studies have been introduced to join Al alloy with the steel sheet by fusion welding, weak joint strength and galvanic corrosion still remained as problems to be solved. As a solid state welding, friction stir welding has been preferred to fusion welding processes in the dissimilar metal joints. This study investigated friction stir spot welding (FSSW) of Al alloy to the thin steel sheet with a thickness of 0.65 mm. The conventional FSSW is a stationary spot welding process but new approach adopted an additional circumferential movement in company with high speed tool rotation. A full factorial experimental design was implemented, and the main and interaction effects of parameters were analysed on the failure load in the tensile shear test. The direction and radius of rotation were statistically significant parameters and these two parameters affected the joint width and the shape of the hook.

Evaluation of the Weldability of Cu Sheet through the Ultrasonic Metal Welding Experiment (Cu박판의 초음파 금속 용착 실험을 통한 용착성 평가)

  • Park, Woo-Yeol;Jang, Ho-Su;Kim, Jung-Ho;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.613-618
    • /
    • 2012
  • The Ultrasonic metal welding is used in the solid-phase welding method at room temperature or low temperature state. In welding process, the high frequency vibration energy is delivered to the welding part under the constant pressure for welding. In this study, we aimed to design and manufacture a 40,000 Hz band horn through finite element analysis. By performing modal analysis and harmonic response analysis, the modal analysis result is that the horn frequency was 39,599Hz and the harmonic response result that the horn frequency was 39,533Hz. These results were similar. In order to observe the designed horn's performance, about 4,000 voltage data was obtained from a light sensor and was analyzed by FFT analysis using Origin Tool. The result RMS amplitude was approximately $8.5{\mu}m$ at 40,000Hz, and maximum amplitude was $12.3{\mu}m$. Using this manufactured horn along with an ultrasonic metal welder and tension tester, the weldability of Cu sheets was evaluated. The maximum tensile force was 66.53 N in the welding condition of 2.0 bar pressure, 60% amplitude, and 0.32 s welding time. In excessive welding conditions, it was revealed that weldability is influenced negatively.