• 제목/요약/키워드: welding residual stress

검색결과 598건 처리시간 0.02초

신경회로망을 이용한 평판 맞대기용접의 잔류응력 예측시스템 개발 (Predictive System Evaluation of Residual Stresses of Plate Butt Welding Using Neural Network)

  • 차용훈;성백섭;이연신
    • Journal of Welding and Joining
    • /
    • 제21권1호
    • /
    • pp.80-86
    • /
    • 2003
  • This study develops a system for effective prediction of residual stresses by the backpropagation algorithm using the neural network. To achieve this goal, a series of experiments were carried out to and measured the residual stresses using the sectional method. With the experimental results, the optional control algorithms using a neural network could be developed in order to reduce the effect of the external disturbances during GMA welding processes. Then the results obtained from this study were compared between the measured and calculated results, weld guality might be controlled by the neural network based on backpropagation algorithm.. This system can not only help to understand the interaction between the process parameters and residual stress, but also improve the quantity control for welded structures.

신경회로망을 이용한 용접잔류응력 예측에 관한 연구 (A Study on the Predict of Residual Stress Using a Neural Network)

  • 김일수;이연신;박창언;정영재;안영호
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2000년도 특별강연 및 춘계학술발표대회 개요집
    • /
    • pp.251-255
    • /
    • 2000
  • Recently, the improvement of computer capacities and artificial intelligence ware caused to employ for prediction of residual stresses and strength evaluation. There are a lot of researches regarding the measurement and prediction of residual stresses for weldment using a neural network in the advanced countries, but in our country, a neural network as a technical part, has only been used on the possibilities of employment for welding area. Furthermore, the relationship between residual stress and process parameters using a neural network was wholly lacking. Therefore development of a new technical method for the optimized process parameters on the reduction of residual stress and applyment of real-time production line should be developed. The objectives of this paper is to measure the residual stress of butt welded specimen using strain gage sectioning method and to apply them to a neural network for prediction of residual stresses on a given process parameter. Also, the assessment of the developed system using a neural network was carried out

  • PDF

HDM을 이용한 잔류응력측정과 압축·인장 잔류응력이 인가된 재료의 피로수명평가 (Fatigue Life Evaluation on Compressive & Tensional Residual Stress Induced Materials and Residual Stress Measurement using Hole Drilling Method)

  • 백승엽
    • Journal of Welding and Joining
    • /
    • 제31권2호
    • /
    • pp.43-48
    • /
    • 2013
  • This paper Investigated the characteristics of residual stress in weld is composed of typical specimens, are investigated by using three dimensional thermal elasto-plastic FEM analysis. Numerically calculated residual stresses in the gas welds were then compared with experimental results obtained by the hole-drilling method. Using the stress amplitude (${\sigma}a$)R at the hot spot point of gas weld, the relations obtained as the fatigue test results for typical specimens having various dimensions and shapes were systematically rearranged to obtain the (${\sigma}a$)R-Nf relationship. It was found that more systematic and accurate evaluation of the fatigue strength of plug- and ring-type gas-welded joints can be achieved by using (${\sigma}a$)R.

유한요소법에 의한 저항 점용접부의 역학적 특성에 관한 연구 (A Study on the Mechanical Behavior of Resistance Spot Welding by Finite Element Method)

  • 방한서;주성민;방희선;차용훈;최병기
    • Journal of Welding and Joining
    • /
    • 제17권5호
    • /
    • pp.77-82
    • /
    • 1999
  • Resistance spot welding process is completed in very short time and there are many factors affecting on the generation of heat. It is difficult to control these experimental factors and monitor distribution of the temperature and stresses in the experimental analysis case. and too much time and expense are required for the experimental trials to fine proper welding condition. So numerical analyses have been attempted steadily, but most numerical analyses on the resistance spot welding are mainly focused on thermal behavior. Therefore, in this paper, the numerical analysis of mechanical behavior as well as heat conduction is carried out for the spot welding process. For this numerical analysis, axial symmetric computer program for the spot welding analysis by F.E.M. has been developed considering heat conduction and thermal elastic-plastic theory. Material properties depending on temperature such as density, heat conductivity, heat expansion coefficient, specific heat, yield stress, elastic modulus, and specific resistance are considered. Using the results of temperature distribution obtained from heat conduction analysis, the thermal elastic-plastic analysis is carried out to clarify mechanical behavior of spot welded specimen. In order to evaluate the effect of residual stresses, numerical analyses are carried out under tension-shear load in two cases respectively; one with residual stress, the other without residual stresses.

  • PDF

Ultrasonic Impact Treatment(UIT)효과가 용접재의 피로수명에 미치는 영향 (The Effect of Ultrasonic Impact Treatment(UIT) for Fatigue Life of Weldment)

  • 송준혁;이현우
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.38-45
    • /
    • 2010
  • Welding structures are designed to endure its expected life. The most important factors are life. Especially on welded structure, fatigue strength is critical. So this study performed a research on Box and T shape weldment specimen to examine the influence of welding type. In this experiment, the results indicate Box shape was available in more than T shape. Fatigue tests were performed to evaluate the fatigue strength of the both as-welded and statically pre-loaded specimens by 3 point bending load. Fatigue life can be improved by using Ultrasonic Impact Treatment(UIT) effect. Ultrasonic Impact Treatment(UIT) is excellent for eliminating the tensile residual stresses and generating compressive residual stresses which elevate fatigue strength of welded structures. Also, this shows that welding part has better fatigue life and welding was performed well. In this study, to evaluate the Ultrasonic Impact Treatment(UIT) effect, for welding structure, the experiment was conducted at various levels of stress range between 100MPa and 500MPa. From the test results, it was indicated that fatigue performance was improving by Ultrasonic Impact Treatment(UIT)

레이저 간섭법과 점 가열법을 이용한 용접부의 잔류응력 측정에 관한 연구 (A Study on Welding Residual Stress Measurement by Laser Inteferometry and Spot Heating Method)

  • 홍경민;이동환;강영준
    • 한국정밀공학회지
    • /
    • 제25권3호
    • /
    • pp.101-108
    • /
    • 2008
  • Residual stress is one of the causes which make defects in engineering components and materials. Many methods have been developing to measure the residual stress. Though these methods provide the information of the residual stress, they also have disadvantage like a little damage, time consumption, etc. In this paper, we devised a new experimental technique to measure residual stress in materials with a combination of laser speckle pattern interferometry and spot heating. The speckle pattern interferometer measures in-plane deformation during the heat provides for much localized stress relief. 3-D shape is used for determining heat temperature and other parameters. The residual stresses are determined by the amount of strain that is measured subsequent to the heat and cool-down of the region being interrogated. A simple model is presented to provide a description of the method. In this paper, we could experimentally confirm that residual stress can be measured by using laser interferometry and spot heating method.

SS41 용접재의 잔류응력장내에서의 피로균열 성장거동에 관한 연구 (A Study on the Fatigue Crack Growth Behavior in Residual Stress Field of the SS41 Welding Material)

  • 최병기
    • 한국안전학회지
    • /
    • 제17권1호
    • /
    • pp.33-38
    • /
    • 2002
  • SS41 material is welded automatically and is investigated some effects of the welding residual stress on the growth and propagation of fatigue crack, so as to study the fatigue behaviour in the welding residual stress field. The summarized results are as follows; 1) In case of the load amplitude is constant, as the stress ration is changing to 0.1, 0.33 and 0.5 the propagation life is constant but the initiation life decreases. And than, when maximum load or minimum load is constant, s the stress ration increases the initiation life and propagation life. 2) It was shown that the fatigue crack propagation ratio da/dn was almost constant regardless of the stress ratio change at constant load amplitude and that the larger stress ratio, the slower was the fatigue crack propagation ratio. 3) The opening ratio U is influenced by $K_{max}$ but it isn't only the function of $K_{max}$ because data range is very large. 4) The fatigue life of the specimens on tensile compressive residual stress field was decreased and increased respectably more than that of the base metal.

용접잔류응력의 생성 메카니즘과 그 영향(I) -용접잔류응력의 생성 메카니즘- (Mechanism and Effects of Welding Residual Stress -Mechanism of Welding Residual Stress-)

  • 박정웅
    • Journal of Welding and Joining
    • /
    • 제22권2호
    • /
    • pp.1-2
    • /
    • 2004
  • 강구조물 제작시 용접프로세스에 의해 용접부 근방에서는 용접열원에 의해 급속가열ㆍ급속냉각의 열 사이클을 받으며, 열원의 이동과 함께 온도장이 변화하므로 용접부에 불균일한 온도분포가 발생된다. 이러한 불균일한 온도분포에 의한 용접부 근방의 열팽창ㆍ수축을 용접부로부터 떨어져 있는 저온상태의 부재가 이를 구속하여 결과적으로 용접변형과 잔류응력이 발생한다.(중략)

기계적 응력 완화법에 의한 용접구조물의 비선형 거동에 관한 연구 (A Study on Non-linear Behavior in Welded Structures by Mechanical Stress Release Method)

  • 김정현;장경복;윤훈성;강성수;조상명
    • Journal of Welding and Joining
    • /
    • 제21권1호
    • /
    • pp.66-71
    • /
    • 2003
  • The release of residual stress by mechanical loading and unloading is often performed in the fabrication of box structure fur steel bridge. The proper degree of loading and unloading is significant at release method of residual stress by mechanical loading because that degree is changed by material and geometric shape of welded structure. Therefore, the simulation model that could exactly analyze the release of residual stress by mechanical loading is to be necessary. In this study, the non-linear behavior of weldments under external loading and unloading, such as the decrease and increase of structure stiffness, was investigated by monitoring of nominal stress and strain. Tensile loading and unloading test and the proper degree of stress relaxation was measured by sectioning technique using strain gauge. Analysis model that is indispensable for the effective application of MSR method was established on the basis of test and measurement result.

노즐의 피로해석에 미치는 용접잔류응력의 영향 (Effect of Weld Residual Stress on Fatigue Analysis of Nozzle)

  • 김상철;김만원
    • Journal of Welding and Joining
    • /
    • 제32권1호
    • /
    • pp.71-78
    • /
    • 2014
  • Although the fatigue design curve of ASME Code has enough margin with respect to alternating stress and cycles, the welding residual stress(WRS) should be included in fatigue analysis. In this paper, WRS distribution in a nozzle with dissimilar metal weldment was obtained by finite element analysis and was added in fatigue analysis. The fatigue analysis was performed by following the ASME Code including thermal and stress analysis applying with postulated 30 transient conditions. The calculated results of a cumulative fatigue usage factors(CUF) were compared for the case of the models with or without WRS effects. The results showed that the CUF at weldment and heat affected zone was affected by the WRS.