• Title/Summary/Keyword: welding point

Search Result 386, Processing Time 0.033 seconds

A Study on the Arc Position which Influence on Quality of Plug Welding in the Vehicle Body (차체 플러그 용접품질에 영향을 미치는 아크 위치에 대한 실험적 기초 연구)

  • Lee, Kyung-Min;Kim, Jae-Seong;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.30 no.3
    • /
    • pp.66-70
    • /
    • 2012
  • Welding is an essential process in the automotive industry. Most welding processes that are used for auto body is spot welding. And $CO_2$ arc welding is used in a small part. In production field, $CO_2$ arc welding process is decreased and spot welding process is increased due to welding quality is poor and defects are occurred in $CO_2$ arc welding process frequently. But $CO_2$ arc welding process should be used at robot interference parts and closed parts where spot welding couldn't. $CO_2$ welding is divided into lap welding and plug arc spot welding. In case of plug arc spot welding, burn through and under fill were caused in various welding environment such as different thickness combinations of base metal, teaching point, over the two steps welding and inconsistent voltage/current. It makes some problem like poor quality of welding area and decrease the productivity. In this study, we will evaluate the effect of teaching point through the weld pool behavior and bead geometry in the arc spot welding at the plut hole. Welding position is horizontal position. And galvanized steel sheet of 2.0mm thickness that has plug hole of 6mm diameter was used. Teaching point was changed by center, top, bottom, left and right of the plug hole. At each condition, the phenomenon of weld pool behavior was confirmed using a high-speed camera. As the result, we find the center of plug hole is the most optimal teaching point. In the other teaching point, under fill was occurred at the plug hole. This phenomenon is caused by gravity and surface tension. For performance of arc spot welding at the plug hole, the teaching condition should be controlled at a center of plug hole.

A Study of the Effects on the Structural Strength by Change of Spot Welding Pitch (점용접의 간격 변화에 의한 구조 강성 영향 평가 연구)

  • Hong, Min-Sung;Kim, Jong-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.511-520
    • /
    • 2010
  • In general, spot welding is used at no welding rod or flux for the process, low welding point temperature compared to arc welding, short heating time, less damage to the parent material, and low deformation and residual stress, relatively. Also, because of the pressurization effect, better mechanical qualities of the welding parts are obtained. Therefore, in various fields of industry its rapid operation speed can make mass production possible such as motor industry. In FEM analysis for the spot welding process, it is effective to use simple modeling rather than complicated one because of its numerous number of spots and reduction of analysis time. Therefore, this study provides with not only simplification of modeling analysis by using beam component composition of structure without re-compositing the spot welding point mesh but also modeling analysis of which property of fracture strength is reflected. In addition complete spot welding model is examined at rectangular post shape (hat shape) by impact test, compared the results, and verified its validity. As a result, it is possible to optimize the welding position and to recognize the strength of structure and the proposed equal distance model shows the effect of welding point reduction and improvement of stiffness.

Effects of the Gap and the Speed on the Lap-Joint $CO_2$ Laser Welding of Automotive Steel Sheets (자동차용 강판의 겹치기 $CO_2$ 레이저 용접에서 용접속도와 판재간격에 따른 용접특성 연구)

  • 이경돈;박기영;김주관
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.510-516
    • /
    • 2002
  • Recently the laser welding technology has been applied increasingly for the automotive bodies. But the lap joint laser welding for 3 dimensional automotive body is new while the butt joint laser welding is well known as the tailored blank technology. In this study, the process window was found for the full penetration welding of the lap joint of the 1mm-thick high strength steel sheets. The limit curves and characteristic curves were suggested to define the boundaries and the contour lines in a space of the welding speed and the gap size. The characteristics of the weld sectional geometry were used to determine the limit curves. They are bead width, penetration depth and sectional area. After the observed data was analysed carefully, it was noticed that there was a transition point at which the sectional shape was changed and the bead area jumped as the welding speed was increased. Also a new concept of 'input energy Per volume' was suggested to distinguish the difference at the transition Point. The difference of sectional areas at the transition point can be related to the dynamic keyhole phenomena.

Minimum time path planning of robotic manipulator in drilling/spot welding tasks

  • Zhang, Qiang;Zhao, Ming-Yong
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.132-139
    • /
    • 2016
  • In this paper, a minimum time path planning strategy is proposed for multi points manufacturing problems in drilling/spot welding tasks. By optimizing the travelling schedule of the set points and the detailed transfer path between points, the minimum time manufacturing task is realized under fully utilizing the dynamic performance of robotic manipulator. According to the start-stop movement in drilling/spot welding task, the path planning problem can be converted into a traveling salesman problem (TSP) and a series of point to point minimum time transfer path planning problems. Cubic Hermite interpolation polynomial is used to parameterize the transfer path and then the path parameters are optimized to obtain minimum point to point transfer time. A new TSP with minimum time index is constructed by using point-point transfer time as the TSP parameter. The classical genetic algorithm (GA) is applied to obtain the optimal travelling schedule. Several minimum time drilling tasks of a 3-DOF robotic manipulator are used as examples to demonstrate the effectiveness of the proposed approach.

An Improvement of Welding Method for the Corrugated Stainless Steel Tubing(CSST) (가스용 금속 플렉시블 호스의 용접방법 개선에 관한 연구)

  • Kim, Wan-Jin;Yi, Yeong-Seop;Choi, Jin-Lim
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.79-83
    • /
    • 2008
  • The corrugated stainless steel tubing(CSST) for the fuel gas piping system can be installed easily and quickly. It is often constructed under the ceiling and the wall which has a good flexibility and installation in comparison with iron pipe. However, the quality of the CSST is determined to depend upon the welding skill of stainless steel tubing. In this study, it is tested by controlling jet point of Ar as inert and cooling gas, and also compared with the bead state of welding point and the performance. As a result, it has the best condition when the jet point of Ar is located behind $5{\sim}10mm$ of the welding point.

Weld Defect Formation Phenomena during High Frequency Electric Resistance Welding

  • Choi, Jae-Ho;Chang, Young-Seup;Kim, Yong-Seog
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.267-273
    • /
    • 2001
  • In this study, welding phenomena involved in formation of penetrators during high frequency electric resistance welding were investigated. High speed cinematography of the process revealer that a molten bridge between neighboring skelp edges forms at apex point and travels along narrow gap toward to welding point at a speed ranging from 100 to 400 m/min. The bridge while moving along the narrow gap swept away oxide containing molten metal from the gap, providing oxide-free surface for a forge-welding at upsetting stand frequency of the budge formation, travel distance and speed of the bridge were affected by the heat input rate into strip. The travel distance and its standard deviation were found to have a strong relationship with the weld defect density. Based on the observation, a new mechanism of the penetrator formation during HF ERW process is proposed.

  • PDF

A Study on Analyzing Thermal Strain of Weldment during Cooling used at Low MS Point Weld Consumables (MS Point 저감 용접재에 적용한 냉각시 용접부 열변형률 분석에 관한 연구)

  • Ha, Yunsok;Nam, Seongkil;Park, Sejin;Kwon, Changgil
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.37-43
    • /
    • 2013
  • This study targets to make clear the connection between MS (Martensite start) point and welding shrinkage. We approved that a Martensite-transformed weldment may not yield state under low MS point, but also admitted the limitation of numerical calculation by inherent strain approach or thermal strain approach. Therefore, new thermal strain formulae during cooling stages were made. As a thermal strain is obtained by integrating thermal extension coefficient, a constant of integration should be decided. In our suggested formulae, the origin was based on totally remained austenite, and added strain from volume changes in Martensite transformation was based on totally transformed ferrite. Through the suggested methodology, It is verified that an MS point under a critical temperature can let weld shrinkage relax and the critical value can be obtained. For supporting this process, 15 weld-consumables were made, were tested by fillet type and were measured. As a result, a positive correlation between MS point and level of weld-distortion was obtained, but it was rather weak.

Studies on weldment performance of Ti/Al dissimilar sheet metal joints using laser beam welding

  • Kalaiselvan, K.;Elango, A.;Nagarajan, N.M.;Mathiazhagan, N.;Vignesh, Kannan
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.627-634
    • /
    • 2018
  • Laser beam welding is more advantageous compared to conventional methods. Titanium/Aluminium dissimilar alloy thin sheet metals are difficult to weld due to large difference in melting point. The performance of the weldment depends upon interlayer formation and distribution of intermetallics. During welding, aluminium gets lost at the temperature below the melting point of titanium. Therefore, it is needed to improve a new metal joining techniques between these two alloys. The present work is carried for welding TI6AL4V and AA2024 alloy by using Nd:YAG Pulsed laser welding unit. The performance of the butt welded interlayer structures are discussed in detail using hardness test and SEM. Test results reveal that interlayer fracture is caused near aluminium side due to low strength at the weld joint.

Validation of Efficient Welding Technique to Reduce Welding Displacements of Ships using the Elastic Finite Element Method

  • Woo, Donghan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.3
    • /
    • pp.254-261
    • /
    • 2020
  • Welding is the most convenient method for fabricating steel materials to build ships and of shore structures. However, welding using high heat processes inevitably produces welding displacements on welded structures. To mitigate these, heavy industries introduce various welding techniques such as back-step welding and skip-step welding. These techniques effect on the change of the distribution of high heat on welded structures, leading to a reduction of welding displacements. In the present study, various cases using different and newly introduced welding techniques are numerically simulated to ascertain the most efficient technique to minimize welding displacements. A numerical simulation using a finite element method based on the inherent strain, interface element and multi-point constraint function is introduced herein. Based on several simulation results, the optimal welding technique for minimizing welding displacements to build a general ship grillage structure is finally proposed.