• 제목/요약/키워드: welding flux

검색결과 268건 처리시간 0.025초

용접흄 충 금속함량 변화에 관한 연구 (A Study on the Content Variation of Metals in Welding Fumes)

  • 윤충식;박동욱;박두용
    • 한국환경보건학회지
    • /
    • 제28권2호
    • /
    • pp.117-129
    • /
    • 2002
  • Concentration of welding fumes and their components is known to be hazardous to welder and adjacent worker. To determine the generation rates of metals in fumes, $CO_2$ flux cored arc welding on stainless steel was performed in well designed fume collection chamber. Variables were different products of flux cored wire(2 domestic products and 4 foreign products) and input energy(low-, optimal- , high input energy). Mass of welding fumes was determined by gravimetric method(NIOSH 0500 method), and 17 metals were analysed by inductively coupled plasm-atomic emission spectroscopy(NIOSH 7300 method). Flux cored wire tube and flux were analysed by scanning electron microscopy to determine their metal composition. 17 metals were classified by their generation rates. Generation rates of iron, manganese, potassium and sodium were all above 50mg/min at optimal input energy level. Generation rates of chromium and amorphous silica were 25~50mg/min. At 1~25mg/min level, nickel, titanium, molybdenum, and aluminum were included. Copper, zinc, calcium, lead, magnesium, lithium, and cobalt were generated below 1 mg/min. Generation rates of metal components in fumes were influenced by input energy, types of flux cored wire. Flux cored wire was consisted of outer shell tube and inner flux. Iron, chromium, and nickel were the major components of outer tube. Flux contained iron, chromium, nickel, potassium, sodium, silica, and manganese. The use of flux cored wire can increase the hazards by increasing the amounts of fumes formed relative to that of solid wire. The reason might be the direct transfer of elements from the flux, since the flux is fine power. Ratio of metals to the fume of flux cored wire was lower than that of solid wire because non-metal components of flux were transferred. Total metal content of fumes in flux cored arc welding was 47.4(24.3~57.2) percent that is much lower than that of solid wire, 75.9 percent. We found that generation rates of iron, manganese, chromium and nickel, all well known to cause work related disease to welder, increased more rapidly with increasing input energy than those of fumes. To reduce worker exposure to fumes and hazardous component at source, further research is needed to develop new welding filler materials that decrease both the amount of fumes and hazardous components.

피복성분에 의한 수중용접봉의 아크 안정성 개선에 관한 실험연구 (An Experimental Study on the Arc Stability Improvement of Underwater Wet Welding with Flux Ingredients)

  • 김복인;노창석;정교헌;김민남
    • 한국해양공학회지
    • /
    • 제15권4호
    • /
    • pp.73-79
    • /
    • 2001
  • Underwater wet bead-on-plate welds were experimentally performed on 11mm thick SS400 steel plate as base metal by using six different types of flux coated electrodes of 3.2mm diameter. Two kinds of different flux coated wet arc electrodes (UW-1, UW-2) were individually designed flux materials, three kinds of the electrodes (E4301, E4311, E4313) were terrestrial electrodes and the another one (TN20) was an imported underwater wet welding electrode. As results, the individually designed flux coated underwater electrode, UW-2 and TN20 had a good starting and the excellent arc stability compared with other electrodes. No significant difference of bead appearance could be detected, but the slag detachability of TN20 electrodes was relatively undesirable. By rapid cooling rate, the hardness value and the portion of martensite of HAZ were increased, but it was considerably maintain stable for TN20 and UW-2 electrodes. The individually designed flux coated electrode, UW-2 could be used in practice for underwater bead welds.

  • PDF

CaO-SiO2-Al2O3-MgO계 용접 플럭스계의 점성에 미치는 MgO의 영향성에 관한 연구 (Effect of MgO on the Viscous Behavior of CaO-SiO2-Al2O3-MgO Welding Flux System)

  • 김혁;정은진;전영덕;민동준
    • 대한금속재료학회지
    • /
    • 제47권2호
    • /
    • pp.114-120
    • /
    • 2009
  • The viscosities of $CaO-SiO_2-Al_2O_3-MgO$ flux were measured under the condition of $CaO/SiO_2=1.0-1.3$ and 5-20 wt%MgO. Submerged arc welding flux with $5wt%Al_2O_3$ content had the lowest critical temperature and widest solid-liquid coexisting region at about 5 wt%MgO. It indicateds that both critical temperature and viscosity depend on the kind of primary phase of molten flux. Viscous behavior of the molten flux at 1773 K was analyzed in the view of silicate structure changed by FT-IR spectroscopy. Based on the critical temperature and the behavior of viscosity at a fixed temperature, it could be proposed that the contents of MgO and $Al_2O_3$ in SAW flux show a pronounced effect on preventing contamination in maintaining the liquid phase flux after welding process.

Design of Metal Cored Wire for Erosion Resistant Overlay Welding

  • Kim, Jun-Ki;Kim, In-Ju;Kim, Ki-Nam;Kim, Ji-Hui;Kim, Seon-Jin
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.202-204
    • /
    • 2009
  • Erosion is a common failure mode of materials frequently encountered in plant and power industry. Although the erosion resistance of Fe-base alloy has been inferior to the other expensive materials, it is expected that the strain-induced martensitic transformation can impart high erosion resistance to Fe-base alloy. The key technology to develop Fe-base metal cored welding wire for erosion resistant overlay welding may include the strain-induced metallurgy for hardening rate control and the welding flux metallurgy for dilution control. Sophisticated studies showed that the strain-induced martensitic transformation behavior was related to the critical strain energy which was dependent on the alloy composition. Dilution and bead shape of overlay weld were proved to be affected by metal transfer mode during gas tungsten arc welding and elements in welding fluxes. It was considered that the highly erosion resistant Fe-base overlay weld could be achieved by precise control of alloy composition to have proper level of critical strain energy for energy absorption and welding flux formulation to have small amount of deoxidizing metallic elements for dilution.

  • PDF

습식 수중 아크용접봉의 국산화개발에 관한 기초연구 (The Experimental Study of Flux Improvement of Wet Underwater Arc Welding Electrode)

  • 김민남;김복인;노창석
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.180-186
    • /
    • 2001
  • Underwater wet welding process was experimentally investigated by using the six types of flux coated electrodes of 3.2mm diameter and the KR-RA steel plate of 11mm thickness as base metal. Two types of electrodes were domestic covered are welding electrode(CR13, CR14) and another two types of wet welding electrodes(UW-CS-01, TN-20) and the other two types(UW-X1, UW-X2) where individually designed flux coasted electrode for experimental welding purpose.

  • PDF

Numerical analysis on the welding residual stress and fracture toughness of the heavy thick steel welded joints by welding processes

  • Bang, HanSur;Bang, HeeSeon
    • Journal of Welding and Joining
    • /
    • 제33권2호
    • /
    • pp.32-39
    • /
    • 2015
  • This study examined the welding residual stress and fracture toughness of 78mm thick steel electro gas welding (EGW) and flux cored arc welding (FCAW) welded joints by numerical analyses of the thermal elasto-plastic behavior and fracture toughness(KIC). The residual stress, fracture toughness characteristics and production mechanism on the welded joints were clarified. Moreover, the effects of the welding process (EGW and FCAW) on the welding residual stresses and fracture toughness of welded joints were evaluated. The results showed that the new welding process (EGW) appears to be an effective substitute for the existing welding process (FCAW) in a thick steel plate with high strength.

$CO_2$ FCAW에서 용접조건이 Fume발생량에 미치는 영향에 관한 연구 (A Study on the Effect of Welding Conditions on Fume Generation Rate in $CO_2$ Flux Cored Arc Welding)

  • 채현병;김정한;김희남
    • 한국안전학회지
    • /
    • 제13권4호
    • /
    • pp.87-95
    • /
    • 1998
  • The use of flux cored arc welding(FCAW) process has grown dramatically since it has been developed because of the remarkable operating characteristics and the resulting weld properties. The feature that distinguishes the FCAW process from other arc welding processes is the enclosure of fluxing ingredients within a continuously fed tubular electrode. The benefits of FCAW process are the increased productivity due to continuous wire feeding, the metallurgical effects derived from the reactions with flux, and the shapes of weld bead formed by slag. However, FCAW process causes the problem in working environment because it generates much more fume than other welding processes. Recently, the welding fume became a hot issue in the field after some welders were diagnosed as manganese toxcosis and siderosis. This study was started to investigate the characteristics of welding fume and utilize the results from the investigation to protect the welders from welding fume. As a first step, the effect of welding conditions on the fume generation rate(FGR) were investigated during FCAW process with $CO_2$ shielding. The considered welding conditions were welding current, arc voltage, travel speed, contact tube to work distance, and torch angle. The results showed that FGR was affected by all of these factors.

  • PDF

Self-shielded flux cored arc welding시 가스 발생제가 용적 이행 현상에 미치는 영향 (Effects of gas formers on metal transfer of the self-shielded flux cored arc welding)

  • 정재필;김경중;황선효
    • Journal of Welding and Joining
    • /
    • 제3권1호
    • /
    • pp.40-45
    • /
    • 1985
  • Wire meling characteristics were examined with variation of gas formers such as $MgCO_3, CaCO_3 and Li_ 2CO_ 3$ by self-shielded flux cored arc welding. The flux cored wire of overlap type was welded by DCRP. The results obtainedareas follows. 1) Drop type was observed with no gas former, repelled type with MgCO_3$ added and short circuit type with $Li_2CO_3$ added. The variation of transfer mode was related to the blowing force of $CO_2$ gas and the surface tension of the slag. 2) Droplet size increased with adding gas formers due to the effect of $CO_2$ gas cushion. 3) Core spikes were observed more frequently with increasing the amount of gas formers.

  • PDF

플럭스 코어드 아크 용접 공정에서의 흄 형성량에 관한 연구 (A Study on Fume Formation Ratio on Flux Cored Arc Welding Process)

  • 윤충식;백남원
    • 한국환경보건학회지
    • /
    • 제25권3호
    • /
    • pp.108-112
    • /
    • 1999
  • A study was conducted for the effects of input energy on fume formation ratios based on electrode(FFR$_{electrode}(g/kg_{electrode})),\;deposited\;metal(FFR_{weld}(g/kg_{weld}))\;and\;slag(FFR_{slag}(g/kg_{slag}))\;at\;CO_2$ flux cored arc welding on stainless steel. Experiments were run in well designed welding fume box. Six types of flux cored wires were used and three levels of current and voltages were given. The measured values of $FFR_{electrode},\;FFR_{weld},\;FFR_{slag}\;are\;7.90{\pm}1.47\;g/kg_{electrode},\;9.18{\pm}1.65\;g/kg_{\electrode},\;71.8{\pm}24.2\;g/kg_{slag}$ respectively. Fume formation ratios are not increased dramatically by input energy because of simultaneous increasing of melted electrodes, deposited metal and slag. The results indicate that the test of fume formation ratios in the research on production of low fume welding wire can be run at the fixed condition of input energy rather than various condition.

  • PDF