• Title/Summary/Keyword: welded high strength steel

Search Result 247, Processing Time 0.067 seconds

A Study on the Application of SAW Process for Thin Plate of 3.2 Thickness in Ship Structure (선체외판부 3.2T 박판에 대한 SAW 용접 적용에 관한 연구)

  • Oh, Chong-In;Yun, Jin-Oh;Lim, Dong-Young;Jeong, Sang-Hoon;Lee, Jeong-Soo
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.51-51
    • /
    • 2010
  • Recently just as in the automobile industry, shipbuilders also try to reduce material consumption and weight in order to keep operating costs as low as possible and improve the speed of production. Naturally industry is ever searching for welding techniques offering higher power, higher productivity and a better quality. Therefore it is important to have a details research based on the various welding process applied to steel and other materials, and to have the ability both to counsel interested companies and to evaluate the feasibility of implementation of this process. Submerged-arc welding (SAW) process is usually used about 20% of shipbuilding. Similar to gas metal arc welding(GMAW), SAW involves formation of an arc between a continuously-fed bare wire electrode and the work-piece. The process uses a flux to generate protective gases and slag, and to add alloying elements to the weld pool and a shielding gas is not required. Prior to welding, a thin layer of flux powder is placed on the work-piece surface. The arc moves along the joint line and as it does so, excess flux is recycled via a hopper. Remaining fused slag layers can be easily removed after welding. As the arc is completely covered by the flux layer, heat loss is extremely low. This produces a thermal efficiency as high as 60% (compared with 25% for manual metal arc). SAW process offers many advantages compared to conventional CO2 welding process. The main advantages of SAW are higher welding speed, facility of workers, less deformation and better than bead shape & strength of welded joint because there is no visible arc light, welding is spatter-free, fully-mechanized or automatic process, high travel speed, and depth of penetration and chemical composition of the deposited weld metal. However it is difficult to application of thin plate according to high heat input. So this paper has been focused on application of the field according to SAW process for thin plate in ship-structures. For this purpose, It has been decided to optimized welding condition by experiments, relationship between welding parameters and bead shapes, mechanical test such as tensile and bending. Also finite element(FE) based numerical comparison of thermal history and welding residual stress in A-grade 3.2 thickness steel of SAW been made in this study. From the result of this study, It makes substantial saving of time and manufacturing cost and raises the quality of product.

  • PDF

Analysis of Impact Characteristics of Bonded Dissimilar Materials for Center Pillar (센터필라 적용을 위한 이종 접합강의 충격 특성 해석에 관한 연구)

  • Nam, Ki-Woo;Park, Sang-Hyun;Yoo, Jung-Su;Lee, Sang-Mun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.929-934
    • /
    • 2012
  • This study was carried out to analyze the dynamic characteristics of laser tailor-welded blanks (TWBs) made of dissimilar materials. The analysis was performed using Hyper Works 10.0 with Solver LS-DYNA v.971. 2D-Shell was used as the modeling element, and the number of elements and nodes was 35,641 and 36,561, respectively. The impact speed was 10 km/h. To analyze the impact characteristics according to the height of the weld line for the upper and lower parts of the center pillar, the length of the lower part was set as 300 and 400 mm. When the lower part was made of SPFC980 steel with a length of 300 mm, the deformation was the smallest and the absorbed energy of the impact force was the largest. On based the lower part of center pillar, the position of TWB shows the shorter and the better value. In other words, the performance depended on the proportion of the upper part made of high-strength SABC1470 steel. A lower part made of SPFH590 steel showed large deformation. In contrast, a lower part made of SPFC980 steel showed significantly lesser deformation. Therefore, the impact performance of a lower part made of SPFC980 steel with a length of 300 mm showed the best analysis result.

Seismic Tests of Steel Beam-to-column Moment Connections with Inclined End-plate Beam Splice (경사단부강판 보 이음을 갖는 강재 보-기둥 모멘트접합부의 내진실험)

  • Lim, Jong Jin;Kim, Dong Gwan;Lee, Sang Hyun;Park, Choul Soo;Lee, Chang Nam;Eom, Tae Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.181-192
    • /
    • 2017
  • A beam splice method using inclined end-plates and high-strength tension bolts was developed. The end-plates welded to a bracket and a spliced beam are connected each other by using the tension bolts. In the present study, six exterior beam-to-column moment connections were tested under cyclic loading. Test parameters were the end-plate details and bolt arrangements. All specimens were designed so that moment resistances of the end-plates and bolts were greater than the required moment at the beam splice, in accordance with the design methods of AISC Design Guide 4. Test results showed that in the beam splices with the extended end-plates, the beam moment successfully transferred to the bracket, without any defeats such as excessive prying action of the end plates and brittle failure at the end plate-to-beam flange weld joints. However, the deformation capacities of the overall beam-to-column connections were limited due to the brittle failure of the beam-to-column flange weld joints. From the test results, recommendations for seismic design and detailing of the beam-to-column moment connection with inclined end-plate beam splice were given.

Hysteretic behaviour of circular tubular T-joints with local chord reinforcement

  • Shao, Y.B.;Wang, Y.M.;Yang, D.P.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1017-1029
    • /
    • 2016
  • When a welded circular hollow section (CHS) tubular joint is subjected to brace axial loading, failure position is located usually at the weld toe on the chord surface due to the weak flexural stiffness of the thin-walled chord. The failure mode is local yielding or buckling in most cases for a tubular joint subjected to axial load at the brace end. Especially when a cyclic axial load is applied, fracture failure at the weld toe may occur because both high stress concentration and welding residual stress along the brace/chord intersection cause the material in this region to become brittle. To improve the ductility as well as to increase the static strength, a tubular joint can be reinforced by increasing the chord thickness locally near the brace/chord intersection. Both experimental investigation and finite element analysis have been carried out to study the hysteretic behaviour of the reinforced tubular joint. In the experimental study, the hysteretic performance of two full-scale circular tubular T-joints subjected to cyclic load in the axial direction of the brace was investigated. The two specimens include a reinforced specimen by increasing the wall thickness of the chord locally at the brace/chord intersection and a corresponding un-reinforced specimen. The hysteretic loops are obtained from the measured load-displacement curves. Based on the hysteretic curves, it is found that the reinforced specimen is more ductile than the un-reinforced one because no fracture failure is observed after experiencing similar loading cycles. The area enclosed by the hysteretic curves of the reinforced specimen is much bigger, which shows that more energy can be dissipated by the reinforced specimen to indicate the advantage of the reinforcing method in resisting seismic action. Additionally, finite element analysis is carried out to study the effect of the thickness and the length of the reinforced chord segment on the hysteretic behaviour of CHS tubular T-joints. The optimized reinforcing method is recommended for design purposes.

Development of Evaluation System for Fatigue Strength on the Connection Between Longitudinals and Transverse Web (유조선 종통보강재와 횡늑골 연결부의 피로강도 평가용 자동화 시스템 개발)

  • Hong, Ki-Sup;Kim, Sung-Chan;Ahn, Jae-Wook;Kim, Seong-Ki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.510-519
    • /
    • 2009
  • Ship structure is composed of the welded mixture members which are plate and stiffeners. Ship structure is also influenced by variable loadings such as wave and inertia load. There have been several fatigue damage problems on the connection between longitudinal and transverse web due to wide usage of high tensile steel and adoption of wide web space to improve shipbuilding productivity. It is impossible to estimate the fatigue lives for all connection details through refined fatigue analysis. It is necessary to use the simplified approach for the fatigue life estimation of the connection details. PLUS analysis, which is suggested by the classification society, is one of the simplified approaches and is widely adopted to get fatigue lives for the connection details along whole cargo hold area. However, ship building yards still have difficulties to get fatigue lives due to large amount of calculation and time even if this approach reduce the time and amount of calculation. This paper treats the computing system developed to reduce efforts of estimating the fatigue lives. The influence factors of mean shear stress and local dynamic pressure are easily calculated and fatigue lives for all hot spots can be estimated automatically by the developed computing system. It is possible to reduce computing time and efforts to get the fatigue lives for the connection details between longitudinals and transverse webs along the ship. This system was applied to get fatigue lives on the connection details of a VLCC and verified the availability.

WELDING-INDUCED BUCKLING INSTABILITIES IN THIN PLATES

  • Han, Myoung-Soo;Tsai, Chon-Liang
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.661-667
    • /
    • 2002
  • Welding-induced buckling distortion is one of the most problematic concerns in both design and fabrication of welded thin-plate structures. This paper deals with experimental and numerical results of the welding-induced longitudinal and/or buckling distortion occurring in welding of 6mm-thick AH36 high strength steel plates. Effects of the heat input and the plate size on the distortion were experimentally evaluated for square plates. Bead-on-plate welding was performed with the submerged arc welding process along the middle line of plate specimens. Experimental results showed that the longitudinal distortion made a single curvature in the plate, and the distortion magnitude along the weld centerline was proportional to the heat input and the plate size. The experimental results were used to examine the validity of the numerical simulation procedure for welding-induced distortion where the longitudinal distortion mode and magnitude were numerically quantified. Three-dimensional, large deformation, welding simulations were performed for selected weld models. Numerical results of the distortion mode and magnitude were in a good agreement with experimental ones. Depending on the presence of halting the distortion growth during the cooling cycle of welding, the condition discriminating buckling distortion from longitudinal distortion was established. Eigenvalue analyses were performed to check the buckling instability of tested plates with different sizes subjected to different heat inputs. The perturbation load pattern for the analysis was extracted from longitudinal inherent strain distributions. Critical buckling curve from the eigenvalue analyses revealed that the buckling instability is manifested when plate size or heat input increases.

  • PDF

Effect of Si contents on Tensile-Shear Peak Load and Nugget Diameter in the Resistance Spot Welded of Dual Phase Steel for Automotive Body Applications (자동차 차체용 냉연 DP강 저항점용접부의 너깃경과 인장전단강도에 미치는 Si 함유량의 영향)

  • Kong, Jong-Pan;Park, Tae-Jun;Han, Tae-Kyo;Chin, Kwang-Geun;Kang, Chung-Yun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.45-45
    • /
    • 2009
  • 원가 측면에서 유리한 저항점용접(Resistance Spot Welding)이 차체 용접에 80%이상으로 가장 많이 적용되고 있다. 첨단고강도강(Advanced High Strength Steel)의 저항점용접성 및 용접부 특성에 미치는 공정 변수의 영향에 대한 연구결과는 많으나, 합금원소의 영향에 대해서는 전무하다. 특히, Si는 DP(Dual Phase)강에 첨가 시 균일한 마르텐사이트의 분포를 촉진하는 원소로 저항 점용접성 및 용접부 특성에 영향을 미칠 것으로 예상되며, 이에 대한 연구는 보고된바 없다. 본 연구에서는 냉연 DP강의 저항 점용접시 중요한 인자 중 하나인 너깃경과 전단인장강도에 미치는 Si함유량의 영향을 검토하였다. 사용된 강재 및 용접기는 1.2mm 두께의 Si함유량(0, 0.5, 1.0, 1.5wt%)이 다른 인장강도 780~1000MPa급 냉연 DP강과 단상 AC용접기를 사용하였다. 용접조건은 ISO 18278-2규격에 따라 가압력 4kA, 초기가압시간 40cycle, 유지시간 17cycle로 고정하고, 용접전류만 변화하여 용접을 실시하였다. 너깃경은 용접부 단면을 컷팅 후 폴리싱 하여, 광학현미경과 Image Pro plus를 이용하여 측정했으며, 인장시편규격은 JIS Z 3137를 이용하였다. Si함유량이 증가에 따라 스패터 발생 전류는 감소했고, 너깃경은 직선적으로 증가했다. Si함유량 증가에 따른 너깃경 증가 이유는 저항(R) 측정결과, Si함유량 증가에 따라 모재의 저항이 높아져, 따라서 입열량($Q=I^2Rt$)이 많아지기 때문으로 판단되었다. 인정전단강도는 Si함유량 증가에 따라 직선적으로 증가했다. 이러한 이유는 Si함유량 증가에 따라 너깃경이 증가되기 때문으로 판단되었고, 너깃경과 인장전단강도 사이에 직선적 관계(PL(kN)=$3.2N_{dia.}$-0.81, $R^2$=0.93)를 가지고 있었다. 파단양상은 Si함유량에 상관없이 5.4kA이하에서는 계면파단이 일어났고, 6.0kA이상에서는 풀 아웃 파단이 일어났다. 계면파단주원인은 용접부 가장자리에 지름이 약 $5{\mu}m$이하의 예리한 노치가 존재하여 노치응력집중과 HAZ계면 근처에 미접합부가 존재하기 때문으로 판단되었다. 6.0kA이상에서는 예리한 노치가 없었고, HAZ부가 완전히 접합되어 있기 때문에 풀 아웃 파단이 일어난 것으로 판단되었다. 따라서, Si함유량 증가에 따라 적정용접전류 구간은 감소했고, 너깃경은 직선적으로 증가했다. 또한, Si함유량 증가에 따라 인장전간강도는 증가 했으며, 너깃경과 인장전단강도 사이에 직선적 관계를 가지고 있었다. 파단 양상은 Si함유량에 상관없이 5.2kA이하에서는 계면파단이, 6.0kA이상에서는 풀 아웃 파단이 일어났다.

  • PDF