• Title/Summary/Keyword: weldability

Search Result 590, Processing Time 0.032 seconds

Characteristics in Paintability of Advanced High Strength Steels

  • Park, Ha Sun
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.83-89
    • /
    • 2007
  • It is expected that advanced high strength steels (AHSS) would be widely used for vehicles with better performance in automotive industries. One of distinctive features of AHSS is the high value of carbon equivalent (Ceq), which results in the different properties in formability, weldability and paintability from those of common grade of steel sheets. There is an exponential relation between Ceq and electric resistance, which seems also to have correlation with the thickness of electric deposition (ED) coat. Higher value of Ceq of AHSS lower the thickness of ED coat of AHSS. Some elements of AHSS such as silicon, if it is concentrated on the surface, affect negatively the formation of phosphates. In this case, silicon itself doesn't affect the phosphate, but its oxide does. This phenomenon is shown dramatically in the welding area. Arc welding or laser welding melts the base material. In the process of cooling of AHSS melt, the oxides of Si and Mn are easily concentrated on the surface of boundary between welded and non‐welded area because Si and Mn could be oxidized easier than Fe. More oxide on surface results in poor phosphating and ED coating. This is more distinctive in AHSS than in mild steel. General results on paintability of AHSS would be reported, being compared to those of mild steel.

Study on Weldability of A5052-H32 Sheet using Nd : YAG Laser-MIG Hybrid Welding (하이브리드(CW Nd : YAG Laser + MIG) 용접을 이용한 A5052-H32 맞대기 용접부의 역학적 특성에 관한 연구)

  • Kim, Jun-Hyung;Bang, Han-Sur;Bijoy, M.S.;Jeon, Geun-Hong;You, Jea-Sun;Bang, Hee-Seon
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.92-96
    • /
    • 2010
  • Recently, the application of aluminum alloys has been increasing for lightweight and high quality transport vehicles. Therefore, the proposal has been made to apply high speed hybrid welding methods to the marine grade aluminum alloy (A5052) used for shipbuilding by combining a 3-KW CW Nd : YAG laser and the MIG welding process. In this study, the characteristics of the welding parameters were investigated for a hybrid butt joint. This paper also describes the determination of the heat distribution in a weldment and the welding residual stress using a finite element method. Mechanical experimentation was also used to ascertain the reliability of the weldment.

Microstructural behavior on weld fusion zone of Al-Ti and Ti-Al dissimilar lap welding using single-mode fiber laser

  • Lee, Su-Jin;Katayama, Seiji;Kim, Jong-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.133-139
    • /
    • 2014
  • Titanium (Ti) metal and its alloys are desirable materials for ship hulls and other ocean structures because of their high strength, corrosion-resistance and light weight properties. And light weight and corrosion-resistant aluminum (Al) is the ideal metal for shipbuilding. The joining of Ti and Al dissimilar metals is one of the effective methode to reduce weight of the structures. Ti and Al have great differences in materials properties, and intermetallic compounds such as $Ti_3Al$, TiAl, $TiAl_3$ are easily formed at the contacting surface between Ti and Al. Thus, dissimilar welding and joining of Ti and Al are considered to be very difficult. However, it was clarified that ultra-high speed welding could suppress the formation of intermetallic compounds in the previous study. Results of tensile shear strength increases with an increase in the welding speed, and therefore extremely high welding speed (50 m/min) is good to dissimilar weldability for Ti and Al. In this study, therefore, full penetration dissimilar lap welding of Ti (upper) - Al (lower) and Al (upper) - Ti (lower) with single-mode fiber laser was tried at ultra-high welding speed, and the microstructure of the interface zones in the dissimilar Al and Ti weld beads was investigated.

The Weldability of Primer-coated Steel for Shipbuilding by $CO_2$ Laser (조선용 Primer코팅강판의 $CO_2$레이저 용접성)

  • Park, Hyun-Joon;Kim, Jong-Do;Kim, Young-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.316-321
    • /
    • 2003
  • The spatter and porosity could be occurred during $CO_2$ CW laser welding of Primer-coated Steel for Shipbuilding. This study has suggested an alternative idea by examining of weld-defect formation mechanism. The primer-coated plate has caused the spatter, humping bead and porosity and these are main part of the welding defect, attributed to the powerful vaporizing pressure of primer attached on the base metal. The zinc of primer has a boiling point that is the lower temperature than melting point of steel. Zinc va}X)f will build up at the interface between the two sheets and this tends to deteriorate the quality of the weld by ejecting weld material from lap position or leaving porosity. Therefore introducing a small gap clearance in the lap position, the zinc vapor could escape through it and sound weld beads can be acquired. In conclusion, we suggested the occurred and prevented mechanism of weld defects with searching the factor.

  • PDF

Effect of PWHT on Variability of fatigue Crack Propagation Resitance in TIG Welded Al 6013-T4 Aluminum Alloy (TIG 용접된 Al6013-T4 알루미늄 합금에서 피로균열전파저항의 변동성에서의 PWHT의 영향)

  • Haryadi, Gunawan Dwi;Lee, Sang-Yeul;Kim, Seon-Jin
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.73-80
    • /
    • 2011
  • The experimental investigation focuses on an influence of artificial aging time in longitudinal butt welded Al 6013-T4 aluminum alloy on the fatigue crack growth resistance. The preferred welding processes for this alloy are frequently tungsten inert gas welding (TIG) process due to its comparatively easier applicability and better weldability than other gas metal arc welding. Fatigue crack growth tests were carried out on compact tension specimens (CT) in longitudinal butt TIG welded after T82 heat treatment was varied in three artificial aging times of 6 hours, 18 hours and 24 hours. Of the three artificial aging times, 24 hours of artificial aging time are offering better resistance against the growing fatigue cracks. The superior fatigue crack growth resistance preferred spatial variation of materials within each specimen in the Paris equation based on reliability theory and fatigue crack growth rate by crack length are found to be the reasons for superior fatigue resistance of 24 hours of artificial aging time was compared to other joints. The highest of crack propagation resistance occurs in artificial aging times of 24 hours due to the increase in grain size (fine grained microstructures).

A Study on the Properties in Friction Weldability of SCNCrM-2B and SM25C (SCNCrM-2B와 SM25C의 마찰용접특성에 관한 연구)

  • Lee Se-Gyoung;Sim Young-Man;Min Taeg-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.49-55
    • /
    • 2006
  • This study deals with the friction welding of SM25C and SCNCrM-2B; The friction time was variable conditions under the conditions of spindle revolution 2,000rpm, friction pressure of 100MPa, upset pressure of l50MPa, and upset time of 4.0 seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests were studied, and so the results were as follows. 1. When the friction time is 2.0 seconds, the tensile strength of friction welds was 874MPa, which is around as much as 117% of the tensile strength of base metal(SM25C), the bending strength of friction welds was 1,354MPa, which is around as much as 108.9% of the bending strength of base metal(SM25C). 2. At the same condition, the maximum vickers hardness was Hv443 at SCNCrM-2B nearby weld interface, which is higher Hv20 than condition of the friction time 0.5 seconds. 3. The results of microstructure analysis show that the structures of two base materials have fractionated and rearranged along a column due to heating and axial force during friction, which has affected in raising hardness and tensile strength.

Structures and Defects in Welds of High Strengths Al Alloys by Using GTAW (GTAW에 의한 Al 합금 용접부의 조직 및 결합에 대한 연구)

  • 하려선;정병호;박화순
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.540-546
    • /
    • 2003
  • Recently Al alloys are being used gradually for structural materials of transports. In welding of Al alloys used for transports, good weldabilities as well as adequate mechanical properties of the welds should be ensured as structural materials. In this study, the welds formation, macro and microstructural characteristics, generation of defects and hardness distribution in welds of Al alloys of 5083, 6N01 and 7N01 by DCSP- and AC-GTA welding process, were investigated. The deeper penetration was obtained in all welds of the alloys by DCSP-GTAW with He gas, compared with those by using AC-GTAW. The 6N01 alloy showed high susceptibilities to solidification cracking in weld metal and liquation cracking in HAZ of the welding beads of both DCSP- and AC-GTAW process. The cracking ratio of 6N01 alloy was increased with increasing of welding current. The porosity ratios in weld metal of all alloys used were extremely low including all welding conditions of DCSP-GTAW. However, in AC-GTAW process, the porosity ratios of the welds using Ar gas showed much higher values than those using He gas.

A Study on the Electrom Beam Weldability of 9%Ni Steel (I) - Penetration and Electron Beam Characteristics - (9%Ni 강의 전자빔 용접성에 관한 연구 (I) - 전자빔 특성과 용입 -)

  • 김숙환;강정윤
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.79-87
    • /
    • 1997
  • This study was performed to evaluate basic characteristics of electron beam welding process for a 9% Ni steel plate. The principal welding process parameters, such as working distance, accelerating voltage, beam current and welding speed were investigated. The AB (Arata Beam) test method was also applied to characterize beam size and energy density of the electron beam welding process. The electron beam size was found to decrease with the increase of accelerating voltage and the decrease of working distance. So, in case of high voltage (150kV), spot size and energy density of electron beam were revealed to be 0.9mm and $6.5\times10^5W/\textrm{cm}^2$ respectively. The accelerating voltage among the welding parameters was found to be the most important factor governing the penetration depth. When the accelerating voltage of electron beam was low ($\leq$90kV), beam current and welding speed did not affect on the penetration depth significantly. However, in case of high voltage ($\geq$120kV), the depth of penetration increased very sensitively with the increase of beam current and the decrease of welding speed.

  • PDF

Effects of Residual Stress with Welding Condition in the Steel Structure of H-beam (H 빔 구조물의 T-Joint에서 용접조건에 따른 용접잔류응력의 영향)

  • 석한길
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.568-574
    • /
    • 2003
  • In the welding for the steel structure of H-beam with mild steel and 490N/$\textrm{mm}^2$ high tensile steel, we applied the fillet weld mostly and 6-8mm weld length(AISC-spec.). And a new developed metal-cored-wire is used in automatic welding as well as semi-automatic welding. In this study we have attempted to raise the welding productivity and to stabilize the quality on horizontal positions of fillet welding with the following items: - We improved the weld productivity using metal based cored wire with a high deposition rate in the steel structure of H-beam. - We tested the weldability and evaluated the quality of the weldmetal by horizontal fillet $CO_2$ welding. The process is carried out in combination with a special purpose metal-based FCW with excellent resistance to porosity and high welding speed. - We studied the micro structure of the weldmetal by the various welding conditions. - We studied the effect of welding residual stress by the welding conditions in T-joint. Therefore, it can be assured that more productive and superior quality of the weldmetal can be taken from this study results.

A Study on Weld Defect and Their Alternatives during Lap Welding of AZ31B Magnesium Alloy by Pulsed Nd: YAG Laser (Nd:YAG 펄스 레이저를 이용한 AZ31B 마그네슘 합금의 겹치기 용접에서 발생하는 용접결함과 그 대책에 대한 연구)

  • Kim, Jong-Do;Lee, Jung-Han;Kim, Young-Sik
    • Journal of Welding and Joining
    • /
    • v.29 no.3
    • /
    • pp.82-88
    • /
    • 2011
  • With a tendency for the application of thin magnesium alloy plates in portable electronic equipment such as cell phone and notebook PC, there is a requirement to develop a welding technology for the lap welding of these thin magnesium alloy. This paper presents the single pulsed laser welding of AZ31B magnesium alloy. The effects of fiber types and parameters such as peak power and pulse width on laser weldability were investigated. The results show that weld defects, especially solidification crack, were always generated in the weld. These defects couldn't be controlled by the simple square pulse, but could be improved through the application of variable pulse. It is because that variable pulse has effect of solidification delay by dropping peak power gradually.