This work describes the low-resolution spectral modeling of the water vapor, carbon dioxide and their mixtures by applying the weighted-sum-of-gray-gas-gases model (WSGGM) to each narrow band. Proper modeling scheme of gray gas absorption coefficients vs temperature relation is suggested. Comparison between the modeled emissivity calculated from this relation and the 'true' emissivity obtained from the high temperature statistical narrow band parameters is made for a few typical narrow bands. Low resolution spectral intensities from one-dimensional layers are also obtained and examined for uniform, parabolic and boundary layer type temperature profiles using the obtained WSGGM's with several gray gases. The results are compared with the narrow band spectral intensities obtained by a narrow band model-based code with Curtis-Godson approximation. Good agreement is found between them. Data bases including optimized modeling parameters and total and low-resolution spectral weighting factors are developed for water vapor, carbon dioxide and their mixtures. This model and obtained data bases, available from the authors' Internet site, can be appropriately applied to any radiative transfer equation solver.
Journal of the Korean Society for Industrial and Applied Mathematics
/
제9권1호
/
pp.99-110
/
2005
This paper suggests an efficient approach for stochastic bicriteria programming problem (SBCPP) with random variables in both the objective functions and in the right-hand side of the constraints. The suggested approach uses the statistical inference through two different techniques: In one of them, the SBCPP is transformed into an equivalent deterministic bicriteria programming problem (DBCPP), then the nonnegative weighted sum approach will be used to transform the bicriteria programming problem into a single objective programming problem, and the other technique, the nonnegative weighted sum approach is used to transform the SBCPP to an equivalent stochastic single objective programming problem, then apply the same procedure to convert stochastic single objective programming problem into its equivalent deterministic single objective programming problem (DSOPP). In both techniques the resulting problem can be solved as a nonlinear programming problem to get the efficient solutions. Finally, a comparison between the two different techniques is discussed, and illustrated example is given to demonstrate the actual application of these techniques.
본 논문에서는 이동 통신에서 주로 쓰이는 하향/상향링크(downlink/uplink)처럼 상호 간의 상관관계가 존재하는 두 개의 채널에 대한 시뮬레이션 방법을 제안한다. 제안된 방법은 기존 방법의 문제점인 채널 간의 상관관계가 수학적 기준모델과 일치하지 않는 점을 개선한 방법이다. 레일리 페이딩 채널 시뮬레이션 모델은 유한개의 삼각함수의 합을 이용한 SOS(Sum-of-Sinusoids) 방법을 사용하였다. 이 방법은 페이딩 신호의 샘플들을 발생할 때 효율적인 방법으로 알려져 있으며 수학적 기준모델에 대한 정확한 시뮬레이션 결과를 얻을 수 있다. 제안된 모델은 기준모델의 이론적인 상관관계와 시뮬레이터로부터 얻은 채널 간의 상관관계의 오차를 줄이기 위해 MSE를 최소화하는 방식을 이용하면서 평균전력을 이론치와 같게 유지하는 방법이다. 실험결과를 통해 제안한 방법이 기존의 방법보다 기준모델의 수학적 상관관계를 더욱 정확히 모사하는 것을 확인하였다.
The current SBAS service does not provide a method to integrate multiple SBAS corrections. This paper proposes a positioning method to effectively integrate multiple SBAS and multiple GNSS. In the method, the final position is obtained by the weighted sum of the positions obtained from the combination of GNSS and SBAS. Since each position is independently computed and combined using flexible weights, it has a simple structure that can easily cope with various environments. In order to verify the operation and performance of the proposed method, raw measurements of GNSS and SBAS were collected using commercial receivers. The experiments using real signals show that the combined use of two SBAS corrections was more accurate by 0.05~0.4m(2dRMS) than using only one SBAS correction. To improve the position accuracy, this paper considered the integration of multi-GNSS and multi-SBAS, which was not found in other existing studies. The proposed method is expected to be a core technology for designing multi-GNSS navigation receivers considering multi-SBAS corrections. The importance of the method will be increased as KPS and KASS also available in near future.
협업여과 추천기법에는 사용자 기반 협업여과와 아이템 기반 협업여과가 있으며, 절차는 유사도 측정, 이웃 선정, 예측값 생성 단계로 이루어진다. 유사도 측정 단계에는 유클리드 거리(Euclidean Distance), 코사인 유사도(Cosine Similarity), 피어슨 상관계수(Pearson Correlation Coefficient) 방법 등이 있고, 이웃 선정 단계에는 상관 한계치(Correlation-Threshold), 근접 N 이웃(Best-N-Neighbors) 방법 등이 있다. 마지막으로 예측값 생성 단계에는 단순평균(Simple Average), 가중합(Weighted Sum), 조정 가중합(Adjusted Weighted Sum) 등이 있다. 이처럼 협업여과 추천기법에는 다양한 기법들이 사용되고 있다. 따라서 본 논문에서는 사용자 기반 협업여과와 아이템 기반 협업여과 추천기법에 사용되는 유사도 측정 기법과 예측값 생성 기법의 최적화된 조합을 알아보기 위해 성능 실험 및 비교 분석을 하였다. 실험은 GroupLens의 MovieLens 데이터 셋을 활용하였고 MAE(Mean Absolute Error)값을 이용하여 추천기법을 비교 하였다. 실험을 통해 유사도 측정 기법과 예측값 생성 기법의 최적화된 조합을 찾을 수 있었고, 사용자 기반 협업여과와 아이템 기반 협업여과의 성능비교를 통해 아이템 기반 협업여과의 성능이 보다 우수했음을 확인 하였다.
International Journal of Computer Science & Network Security
/
제24권9호
/
pp.150-156
/
2024
With the advent of personalized search engines, a myriad of approaches came into practice. With social media emergence the personalization was extended to different level. The main reason for this preference of personalized engine over traditional search was need of accurate and precise results. Due to paucity of time and patience users didn't want to surf several pages to find the result that suits them most. Personalized search engines could solve this problem effectively by understanding user through profiles and histories and thus diminishing uncertainty and ambiguity. But since several layers of personalization were added to basic search, the response time and resource requirement (for profile storage) increased manifold. So it's time to focus on optimizing the layered architectures of personalization. The paper presents a layout of the multi agent based personalized search engine that works on histories and profiles. Further to store the huge amount of data, distributed database is used at its core, so high availability, scaling, and geographic distribution are built in and easy to use. Initially results are retrieved using traditional search engine, after applying layer of personalization the results are provided to user. MongoDB is used to store profiles in flexible form thus improving the performance of the engine. Further Weighted Sum model is used to rank the pages in personalization layer.
본 논문은 가중 퍼지소속함수 기반 신경망(Neural Network with Weighted Fuzzy Membership Functions, NNWFM)을 이용하여 Wisconsin breast cancer의 예측을 수행하는 퍼지규칙을 추출하고 있다. NNWFM는 자기적응적(self adaptive)가중 퍼지소속함수를 가지고 주어진 입력 데이터로부터 학습하여 퍼지규칙을 생성하고 이론 기반으로 예측을 수행한다. 신경망 구조의 중간 부분인 하이퍼박스(hyperbox)들은 n개의 대, 중, 소의 가중 퍼지소속함수 집합으로 구성되며, 학습 후 각 집합은 퍼지집합의 bounded sum을 사용하여 다시 하나의 가중 퍼지소속함수로 합성된다. n개의 특징입력(feature input)은 학습된 모든 하이퍼박스에 연결되어 예측 작업을 수행한다. NNWFM으로 추출된 2개의 퍼지규칙은 99.41%의 예측 인식율을 가지며 이는 퍼지규칙의 수와 인식율에 있어 현재 발표된 논문의 결과보다 우수함을 보여준다.
한국 프로야구에서 장타율과 수정된 출루율을 이용하여 팀의 득점력을 설명하기 위한 지표인 수정OPS와 가중수정OPS를 제시하였다. 먼저 현재 사용되고 있는 출루율을 수정한 수정출루율을 정의하였으며, 수정OPS를 수정출루율과 장타율의 합으로, 가중수정OPS를 수정출루율과 장타율의 가중평균으로 정의하였다. 한국 프로야구 원년인 1982년부터 2013년까지의 정규리그 전 경기 자료를 분석한 결과 수정OPS는 기존의 OPS보다 득점력을 더 잘 설명해 줬다. 연도별 비교에서도 전체 32개 시즌 중 25개의 시즌에서 수정OPS가 기존의 OPS보다 득점력을 더 잘 설명했다. 32개 시즌의 자료를 종합한 결과 수정출루율에 60%, 장타율에 40%의 가중값을 주는 가중수정OPS가 팀의 득점력을 가장 잘 설명하는 타격지표인 것으로 밝혀졌다. 이 가중수정OPS는 Kim (2012)에서 제시된 가중OPS보다도 더욱 높은 설명력을 갖는 것으로 밝혀졌다.
For a double array of random elements {$V_{mn};m{\geq}1,\;n{\geq}1$} in a real separable Banach space, some mean convergence theorems and weak laws of large numbers are established. For the mean convergence results, conditions are provided under which $k_{mn}^{-\frac{1}{r}}\sum{{u_m}\atop{i=1}}\sum{{u_n}\atop{i=1}}(V_{ij}-E(V_{ij}|F_{ij})){\rightarrow}0$ in $L_r$ (0 < r < 2). The weak law results provide conditions for $k_{mn}^{-\frac{1}{r}}\sum{{T_m}\atop{i=1}}\sum{{\tau}_n\atop{j=1}}(V_{ij}-E(V_{ij}|F_{ij})){\rightarrow}0$ in probability where {$T_m;m\;{\geq}1$} and {${\tau}_n;n\;{\geq}1$} are sequences of positive integer-valued random variables, {$k_{mn};m{{\geq}}1,\;n{\geq}1$} is an array of positive integers. The sharpness of the results is illustrated by examples.
This paper presents a game theoretic approach for power transactions analysis in a competitive market. The considered competitive power market is regarded as PooICo model, and the participating players are restricted by only two generating entities for simplicity in this paper. The analysis is performed on the basis of marginal cost based relations of bidding price and bidding generations. That is, we assume that the bidding price of each player is determined by the marginal cost when the bidding generation is pre-determined. This paper models the power transaction as a two player game and analyzes by applying the Nash eauilibrium idea. The generalized game model for power transactions covering constant-sum(especially zero-sum), and nonconstant-sum game is developed in this paper. Also, the analysis for each game model are performed in the case studies. Here, we have defined the payoff of each player as the weighted sum of both player's profits.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.