• Title/Summary/Keyword: weight to power ratio

Search Result 298, Processing Time 0.032 seconds

Design of a 3-DOF Hip Module for Humanoid

  • So, Byung-Rok;Yi, Byung-Ju;Kim, Wheekuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.84.4-84
    • /
    • 2002
  • $\textbullet$ To achieve 3 high power-to-weight ratio, design of 3DOF hip module $\textbullet$ Using parallel mechanism and linear actuator consist of a ball-screw mechanism $\textbullet$ The kinematics analysis for the hip module $\textbullet$ A kinematic index to measure actuator power are introduced. $\textbullet$ It is demonstrated throught simulation that incorporation of redu ndant actuator into the hip module

  • PDF

Permanent Magnet Excited Generator For Gearless Wind Generation Plant

  • Curiac, Paul;Kang, D.H.;Park, D.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.455-458
    • /
    • 2001
  • This paper presents an axial flux permanent magnet synchronous generator with a high power-to-weight ratio, dedicated for small-scale gearless wind power generation plants. For this purpose, a specific design is necessary to meet the imposed requirements. In this paper the design technique for the specifications is presented. The aim of the paper is also to discuss some of the first obtained test results and the involved demagnetizing problem (i.e. short-circuit).

  • PDF

Design Optimization of Linear Synchronous Motors for Overall Improvement of Thrust, Efficiency, Power Factor and Material Consumption

  • Vaez-Zadeh, Sadegh;Hosseini, Monir Sadat
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.105-111
    • /
    • 2011
  • By having accurate knowledge of the magnetic field distribution and the thrust calculation in linear synchronous motors, assessing the performance and optimization of the motor design are possible. In this paper, after carrying out a performance analysis of a single-sided wound secondary linear synchronous motor by varying the motor design parameters in a layer model and a d-q model, machine single- and multi-objective design optimizations are carried out to improve the thrust density of the motor based on the motor weight and the motor efficiency multiplied by its power factor by defining various objective functions including a flexible objective function. A genetic algorithm is employed to search for the optimal design. The results confirm that an overall improvement in the thrust mean, efficiency multiplied by the power factor, and thrust to the motor weight ratio are obtained. Several design conclusions are drawn from the motor analysis and the design optimization. Finally, a finite element analysis is employed to evaluate the effectiveness of the employed machine models and the proposed optimization method.

A Study on Applicability of Diversified Truck Weight-to-Power Ratios (표준트럭의 차별적 적용 방안 연구)

  • Oh Heung-Un
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.89-98
    • /
    • 2006
  • The weight-to-power ratio of the standard truck for the climbing lane design is known to be 200lb/hp. The value was known to be assumed based on constant trucks' capability and regional distributions in stead of widely varied distributions region by region. Additionally, this value was assumed after investigating registered vehicles' statistics instead of investigating real portions of truck volumes. Therefore, it may be said that the value of the current standard truck does not reflect regional or industrial diversity and proportions of truck volumes. To resolve these issues, the present paper studies diversified standard trucks which consider regionally or industrially diversified and observed-volume based weigh-to-power ratios. For this purpose, individual trucks' weigh-to-power ratios obtained at toll-gates of national expressways were used. For regionally based study, the whole nation are divided into 8 regions, then each region is characterized by a unit of a weigh-to-power ratio. The applicability of each value is provided. Results show that the single value for the nationwide standard truck may be 208 lb/hp, 8 lb/hp higher than the current value of 200 lb/hp. Results also show that regional values ranged widely from 170 lb/hp to 230 lb, 30 lb/hp higher/lower than the current value. Conclusively, regional diversity of trucks' weigh-to-power ratios was identified then three types of standardized weigh-to-power ratios which may represent regional characteristics were suggested. As the diversified standard truck are applied to the design standard, two benefits are expected such as decrease of rear-end accident rates or decrease of climb lane construction costs.

  • PDF

Conducted Noise Reduction in Three-Phase Boost Converter using Random (3상 승압형 컨버터에 의한 전도노이즈 감소)

  • Jung, Dong-Hyo;Kim, Sang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.79-82
    • /
    • 2003
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. In the switching-mode power converter, the output voltage is generally controlled by varying the duty ratio of main switch. When a converter operates in steady state, duty ratio of the converter is kept constant. So the power of switching noise is concentrated in specific frequencies. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

  • PDF

Comparative Analysis on Muscle Function and EMG of Trunk and Lower Extremity in Short and Long Distance Athlete (육상 단거리 선수와 장거리 선수의 체간과 하지의 근기능 및 근전도 비교 분석)

  • Jung, Jae-Hu;Kim, Jung-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • The purpose of this study was to compare and analyze muscle function and EMG of the trunk and the lower extremity in short and long distance athletes and in order to determine difference in peak torque per unit weight, muscle power per unit weight, endurance ratio, and %MVIC classified by muscle. For that purpose, isokinetic muscle function tests for waist, knee, and ankle joints and EMG measurements for the trunk and the lower extremity muscle with running motion were conducted for 7 short and long distance high school athletes respectively. The study over muscle function of waist, knee, and ankle joints indicates that peak torque per unit weight of short distance athletes is higher than that of long distance athletes in extension and flexion of waist joint, plantar flexion of right ankle joint, and dorsi flexion of left ankle joint. In case of the muscle power per unit weight of short distance athletes is also higher than long distance athletes in waist, knee, and ankle joints. No difference in endurance ratio of waist, knee, and ankle joints between the two groups was founded. The results of the test over EMG of the trunk and the lower extremity show that %MVIC of erector spinae, rectus femoris, vastus medialis, vastus lateralis, and tibialis anterior is higher than that of long distance athletes in support phase. The above results proved to be the same in flight phase except for %MVIC of medial gastrocnemius. In other words, %MVIC of medial gastrocnemius for short distance athletes turned out to be higher than that of long distance athletes in flight phase.

Power Estimation and Optimum Design of a Buoy for the Resonant Type Wave Energy Converter Using Approximation Scheme (근사기법을 활용한 공진형 파력발전 부이의 발전량 추정 및 최적설계)

  • Koh, Hyeok-Jun;Ruy, Won-Sun;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2013
  • This paper deals with the resonant type of a WEC (wave energy converter) and the determination method of its geometric parameters which were obtained to construct the robust and optimal structure, respectively. In detail, the optimization problem is formulated with the constraints composed of the response surfaces which stand for the resonance period(heave, pitch) and the meta center height of the buoy. Use of a signal-to-noise ratio calculated from normalized multi-objective results with the weight factor can help to select the robust design level. In order to get the sample data set, the motion responses of the power buoy were analyzed using the BEM (boundary element method)-based commercial code. Also, the optimization result is compared with a robust design for a feasibility study. Finally, the power efficiency of the WEC with the optimum design variables is estimated as the captured wave ratio resulting from absorbed power which mainly related to PTO (power take off) damping. It could be said that the resultant of the WEC design is the economical optimal design which satisfy the given constraints.

Evaluation of Damage from Reclosing Scheme for Power Transfromer (재폐로방식이 전력용 변압기에 미치는 영향 평가)

  • O, Jeong-Hwan;Yun, Sang-Yun;Im, Seong-Jeong;Kim, Jae-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.177-183
    • /
    • 1999
  • This paper presents how to evaluate the transformer damage caused by reclosing scheme at the distribution substation. We describe a quantitative relationship between the reclosing scheme and the number of fault current flowing through transformer wsing the probability of a reclosing success/failure. The transformer damage from reclosing scheme is presented using a weight function and a damage function. A weight function is associated with the number of reclosing attempts and the reclosing deadtime to consider cumulative stress caused by reclosing scheme. A damage function is associated with a transformer impact ratio and a transformer functional life. In the case study, the transformer damage is simulated for the probability of a reclosing success. And the evaluation of transformer damage using KEPCO's operation data is performed.

  • PDF

Electromagnetic Structural Design Analysis and Performance Improvement of AFPM Generator for Small Wind Turbine

  • Jung, Tae-Uk;Cho, Jun-Seok
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.374-378
    • /
    • 2011
  • Axial Field Permanent Magnet (AFPM) generators are widely applied for the small wind turbine because of the higher power density per unit weight than that of the conventional radial field generator. It is caused by the disc shaped rotor and the stator structures. The generally used AFPM generator, AFER-NS generator, is composed of the two side's external rotors and non-slotted stator without stator core. However, the output voltage and the output power are limited by the large reluctance by the long air-gap flux paths. In this paper, the design study of AFIR-S generator having double side's slotted stator core is accomplished to improve the output generation characteristics. The electromagnetic design analysis and the design improvement of the suggested AFIR-S generator are studied. Firstly, the electromagnetic design analysis was done to increase the power density. Secondly, the design optimizations of the rotor pole-arc ratio of permanent magnet are accomplished to increase the output power and to reduce the cogging torque. Finally, the output performances of AFER-NS and AFIR-S generator are compared with each other. For this study, 3D FEA is applied for the design analysis because of three dimensional electromagnetic structures.

Analysis of Coal Combustion and Particle Temperature Profiles in a Rotary Kiln for Production of Light-weight Aggregate (경량골재 로타리킬른의 운전최적화를 위한 석탄연소 및 원료입자 승온특성 해석)

  • Park, Jong-Keun;Ryu, Changkook;Kim, Young-Ju
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.18-25
    • /
    • 2014
  • Bottom ash from a coal-fired power plant is usually landfilled to a nearby site, which causes a growing environmental concern and increased operating costs. One way of recycling the bottom ash is to produce light-weight aggregate (LWA) using a rotary kiln. This study investigated the temperature profiles of raw LWA particles in a rotary kiln to identify the range of operating conditions appropriate for ideal bloating. For this purpose, a new simulation method was developed to integrate a 1-dimensional model for the bed of LWA particles and the computational fluid dynamics (CFD) for the fuel combustion and gas flow. The temperature of LWA particles was found very sensitive to the changes in the air preheating temperature and excess air ratio. Therefore, an accurate control of the operation parameters was essential to achieve the bloating of LWA particles without excessive sintering or melting.