• Title/Summary/Keyword: weight of unit volume

Search Result 193, Processing Time 0.028 seconds

Evaluation of brass weaving fishing nets for aquaculture cage applications (어류 가두리에 적용하기 위한 황동 직조 어망의 성능 평가)

  • Geon Woo KIM;Subong PARK
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.2
    • /
    • pp.186-193
    • /
    • 2024
  • Most fishing nets used in fish cage aquaculture are made of synthetic fibers such as polyamide (PA) and polyethylene (PE). Therefore, it is challenging to maintain the internal volume of the fish cage due to biofouling, which can increase the load on the cage or reduce dissolved oxygen levels by impeding smooth current flow. To address this issue, research has been conducted to replace conventional synthetic fiber cage nets with brass nets, demonstrating certain benefits such as improved productivity and ease of fish cage management. However, given the need for a more thorough examination of brass fishing net weaving technology and performance, this study assessed the optimal weaving method for brass fishing nets to be used in fish cages. Additionally, it provided essential data for the practical application of brass fishing nets by evaluating their weight, tensile strength, elongation, fatigue resistance, and wear resistance. The study concluded that weaving brass fishing nets using the chain link method ensures durability, ease of installation, and compact storage in a scroll-like form. Moreover, due to their superior fatigue and wear resistance properties, brass nets can offer increased utility if appropriate net diameter and length are selected to compensate for their higher weight per unit area and relatively higher cost compared to existing fiber fishing nets.

Study on Performance Evaluation of Concrete Using Electric Arc Furnace Oxidizing Slag Aggregate (전기로 산화슬래그 골재를 사용한 콘크리트의 성능 평가에 관한 연구)

  • Lim, Hee-Seob;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.97-103
    • /
    • 2017
  • As the shortage of concrete aggregates is intensifying, the development of alternative resources is urgent. As the amount of steel slag increases year by year, attempts are being made to recycle slag into high-value-added products in order to develop an efficient resource recycling industry based on slag and to obtain economic benefits. However, the use of electric arc furnace oxidizing slag (EOS) as building materials is practically limited because it contains unstable materials. In this paper, physical properties of concrete were evaluated by using electric arc furnace slag aggregate. It has been produced with two levels of general strength area W / C 45% and high strength area W / C 30%. Fresh concrete has been tested in air content, flow and slump, unit weight. The properties of the cured concrete were investigated by compressive strength, bending strength and unit volume weight. As a result of this study, strength of concrete increased with increasing EOS aggregate mixture.

Characteristics of Concrete Using Coal-By-product as Fine Aggregate (석탄 부산물인 경석을 잔골재로 사용한 콘크리트의 특성)

  • In-Hwan Yang;Seung-Tae Jeong;Geun-Woo Park;Gyeong-Min Choi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.53-62
    • /
    • 2024
  • In this paper, an experimental study on the strengths and material properties of concrete manufactured by using coal gangue, as a fine aggregate was conducted. Experimental parameters included coal gangue aggregate contents as a replacement of fine aggregate by 50 % and 100 % (by volume) and fly ash contents. The water-binder ratio was fixed at 0.38. In addition, 30 % of the OPC binder was replaced with fly ash in some mixtures. Test of the unit weight, compressive, split tensile, and flexural tensile strength of concrete were performed and test results were analyzed. Unit weight, compressive strength, split tensile strength, and flexural tensile strength decreased as the coal recycled aggregates increased. In addition, TGA and SEM experiments, which are microstructure experiments, were conducted to analyze thermogravimetric analysis and ITZ by section.

Shear Strength and Compressibility of Oyster Shell-Sand Mixtures for Sand Compaction Pile (SCP공법 적용을 위한 굴패각-모래 혼합토의 전단과 압축특성)

  • Yoon Gil-Lim;Yoon Yeo-Won;Chae Kwang-Seok;Kim Jae-Kwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.17-23
    • /
    • 2004
  • Strength and deformation characteristics of oyster shell-sand mixtures were investigated to utilize waste oyster shell being treated as a waste material. Standard penetration test (SPT) is a common method to obtain in-situ strength in sand. However, in case of oyster shell-sand mixtures, there was no information between SPT N-value and internal friction angle of mixture soils. In this paper SPT experiments from several large scaled model chamber tests and large scaled direct shear tests were carried out with varying unit weight of oyster shell-sand mixtures. Appropriate correlations were in tile study observed among N-value, unit weight and internal friction angle, which make it possible to estimate in-situ strength from SPT and the coefficient of volume compressibility from the confined compression tests to compute the settlement of oyster shell-sand mixtures.

The Quality of artificial lightweight aggregates using waste PET bottles and Properties of their mortar (폐 PET병을 재활용한 인공경량골재의 품질 및 모르타르의 특성)

  • Choi, Yung-Wang;Lim, Hak-Sang;Chung, Jee-Seung;Choi, Wook;Hwang, Youn-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.631-636
    • /
    • 2002
  • This study shows basic data for using as the structural lightweight aggregate. This will be the procedural method of recycling environmental close waste PET bottle lightweight aggregate(PBLA) that is rapidly increased the amount of production of waste PET bottle recently, the quality of developed PBLA and the fundamental properties by analyzing of mortar containing with PBLA. After experiment, the result shows the PBLA quality that have oven dry specific gravity of 1.39, unit volume weight of 844 kg/m$^3$ and absorption rate of 0% is satisfied with qualify regulation of lightweight aggregate. The flowability of mortar containing PBLA is increased maximum 16% with increasing mixing ratio of PBLA, however the compressive strength of mortar is decreased maximum 35% with increasing mixing ratio of PBLA.

  • PDF

A study on Mechanical Performance Evaluation of Cement Paste Using Foaming Agent by Micro FEM Analysis (Micro FEM 해석에 의한 기포제 혼입 시멘트 페이스트의 역학적 성능 평가에 관한 연구)

  • Kim, Bo-Seok;Woo, Young-Je;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.55-56
    • /
    • 2015
  • This study is corroborated as a fundamental resource to develop structural lightweight paste containing silica fume as a part of cement. Paste using foaming agent is generated much foam and decreased density of paste. This study is measured at 0.8% of foaming agent dosage but over 0.8% of foaming agent dosage raise density of paste because of interconnection with foam. Also, FEM analysis using SEM image is confirmed correspondence of between Elastic modulus of experiment and FEM analysis.

  • PDF

A Study on Aggregate Mix Design of Dumbbell-shape Fiber Reinforced Asphalt Concrete Mixture using Bailey Method (베일리 방법을 이용한 아령형 섬유보강 아스팔트 혼합물의 골재 배합설계법 연구)

  • Ham, Sang-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6534-6541
    • /
    • 2013
  • The aim of this study was to develop a fiber-reinforced asphalt mixture that was designed to do the following: 1) address fatigue cracks, which is a major source of damage; and 2) increase the rutting resistance. This study reports the effects of the aggregate mixture design that incorporates a dumbbell-shaped fiber. An experiment was carried out to measure the unit weights and unit weight ratios between the mixture that was compacted and the one that was not. A method to substitute a specific aggregate mixture with the dumbbell-shaped fiber was confirmed using the volume concept according to the Bailey method. The results showed that the weight of the PCS aggregate mixture that need to be replaced was 11.88g when a 0.3% reinforcing fiber was added to the 1950g mixture.

Influence of Replacement Ratio of Wasted Refractory Powder on the Properties of Mortar using Blast Furnace Slag and Recycled Aaggregate (폐내화물 미분말 치환율이 고로슬래그 미분말과 순환골재 사용 모르타르의 품질에 미치는 영향)

  • Song, Yuan-Lou;Baek, Cheol;Kim, Min-Sang;Lee, Jea-Hyeon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.38-39
    • /
    • 2016
  • In this research, the possibility of wasted refractory powder pulverized from refractory block as an expansive admixture and additional alkaline stimulant for class two and three blast furnace slag cements (BSC) was assessed with its high content of free CaO or free MgO. As the replacement ratios of wasted refractory powder and blast furnace slag were increased, flow and air content were decreased, while unit volume weight was increased under same conditions. Compressive strength of mortar was increased with increased replacement ratio of wasted refractory powder, especially, in the case of class three BSC, the highest compressive strength was obtained when wasted refractory powder was replaced 10 %.

  • PDF

Influence of Replacement Ratio of Wasted Refractory Aggregate on the Properties of Mortar using Blast Furnace Slag and Recycled Aggregate (폐내화물 골재 치환율이 고로슬래그 미분말과 순환골재 사용 모르타르의 품질에 미치는 영향)

  • Song, Yuan-Lou;Moon, Byeong-Yong;Kim, Min-Sang;Lee, Jea-Hyeon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.139-140
    • /
    • 2016
  • In this research, the possibility of wasted refractory aggregate pulverized from refractory block as an expansive admixture and additional alkaline stimulant for class two and three blast furnace slag cements (BSC) was assessed with its high content of free CaO or free MgO. As the replacement ratios of wasted refractory powder and blast furnace slag were increased, flow and air content were decreased, while unit volume weight was increased under same conditions. Compressive strength of mortar was increased with increased replacement ratio of wasted refractory powder, especially, in the case of class three BSC, the highest compressive strength was obtained when wasted refractory aggregate was replaced 2%.

  • PDF

A Study on the Temperature Measurement Using Optical Emission in Saline Solution Discharge with Pin to Plate Electrodes (염류용액 방전의 온도 측정에 관한 연구)

  • Kim, Joong Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.66-71
    • /
    • 2016
  • In this study, electrical and spectroscopic characteristics were investigated in the pin to plate discharge of 0.9% weight per unit volume saline solution. The positive and positive- and negative-going dc pulse with 5% duty ratio were applied to tungsten pin electrode. The more amount of discharge current flew in negative discharge. The temperature, which is considered as a local value in the vicinity of vapor of discharge, was about 3,000K which is much higher than the value recommended to be controlled. It can be suggested that not only the temperature of liquid but also the local temperature of vapor is monitored to investigate damages on tissue or cells in biological application.