• Title/Summary/Keyword: weight loading gait

Search Result 12, Processing Time 0.023 seconds

A comparison study for mask plantar pressure measures to the difference of shoes in 20 female (20대 여성의 신발종류에 따른 족저압 영역별 비교 연구)

  • Kim, Y.J.;Ji, J.G.;Kim, J.T.;Hong, J.H.;Lee, J.S.;Lee, H.S.;Park, S.B.
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.83-98
    • /
    • 2004
  • The purpose of this study was to investigate the test-retest of plantar pressures using the F-Scan system over speeds and plantar regions. 6 healthy female subjects in 20's were recruited for the study. Plantar pressure measurements during locomotor activities can provide information concerning foot function, particularly if the timing and magnitude of the loading profile can be related to the location of specific foot structures such as the metatarsal heads. The Tekscan F-Scan system consists of a flexible, 0.18mm thick sole-shape having 1260 pressure sensors, the sensor insole was trimmed to fit the subjects' right. left shoes - sneakers shoes & dress shoes. It was calibrated by the known weight of the test subject standing on one foot. The Tekscan measurements show the insole pressure distribution as a function of the time. This finding has important implications for the development of plantar pressure test protocols where the function of the forefoot is important. According to the result of analysis it is as follows 1) Center of force trajectory in women's dress shoes display direct movement, compare with center of force trajectory in Sneaker shoes displays a little bit curved slow pronation movement. Sneaker shoes in forefoot part display very quick supination movement, therefore, this shoes effects negative effectiveness for ankle's stability Considering center of force trajectory analyzing the more center of force close straight line, the more movement can be quick movement for locomotion. For foot pressure distribution, center of force trajectory in locomotion is better to curved trajectory with pronation movement. So sneaker shoes style is good shoes considering center of pressure distribution trajectory compare with women's dress shoes. 2) Women's dress shoes increased peak pressure in medial, this is effected by high hill's height. The more increased women's dress shoes's height, the more women's peak pressure will increase, pronation can increase compare with before. Supination movement increase, this focused pressure in lateral, also, supination increased more. If the supination movement increased, foot pressure focused in lateral, therefore, it is appeared force distribution in gait direction. This is bad movement in foot's stability. 3) Women's dress shoes in landing phase displayed a long time, this is when women's dress shoes wear, gait movement is unbalance, so, landing phase displayed a long time. For compensation in gait, swing phase quick movement. 4) Women's dress shoes displayed peak pressure distribution in lateral of rearfoot part, Sneakers shoes displayed peak pressure distribution in medial of forefoot part. Its results has good impact absorption compare with women's dress shoes. In forefoot part, sneakers shoes has good propulsive force compare with women's dress shoes.

Effects of Loading on Biomechanical Analysis of Lower Extremity Muscle and Approximate Entropy during Continuous Stair Walking (지속적인 계단 보행에서 부하가 하지 근육의 생체역학적 변인과 근사 엔트로피에 미치는 영향)

  • Kim, Sung-Min;Kim, Hye-Ree;Ozkaya, Gizem;Shin, Sung-Hoon;Kong, Se-Jin;Kim, Eon-Ho;Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.323-333
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the changes of gait patterns and muscle activations with increased loads during stair walking. Also, it can be used as descriptive data about continuous stair walking in a real life setting. Method : Twelve sedentary young male adults(Age: $27.0{\pm}1.8yrs$, Weight: $65.8{\pm}9.9kg$) without any lower extremity injuries participated in this study. Participants performed stair walking up 7 floors and their ascending and descending motion on each floor was analyzed. A wireless electromyography(EMG) were attached on the Rectus Femoris(RF), Biceps Femoris(BF), Gastrocnemius(GN), Tibialis Anterior(TA) muscle to calculate integrated EMG(iEMG), median frequency(MDF) and co-contraction index(CI). Chest and left heel accelerometer signal were recorded by wireless accelerometer and those were used to calculate approximate entropy(ApEn) for analyzing gait pattern. All analyses were performed with SPSS 21.0 and for repeated measured ANOVA and Post-hoc was LSD. Results : During ascending stairs, there were a statistically significant difference in Walking time between 1-2nd and other floors(p=.000), GN iEMG between 2-3th and 6-7th(p=.043) floor, TA MDF between 1-2nd and 5-6th(p=.030), 6-7th(p=.015) floor and TA/GN CI between 2-3th and 6-7th(p=.038) floor and ApEn between 1-2nd and 6-7th(x: p=.003, y: p=.005, z: p=.006) floor. During descending stairs, there were a statistically significant difference in TA iEMG between the 6-5th and 3-2nd(p=.026) floor, and for the ApEn between the 1-2nd and 6-7th(x: p=.037, y: p=.000, z: p=.000) floor. Conclusion : Subjects showed more regular pattern and muscle activation response caused by regularity during ascending stairs. Regularity during the first part of stair-descending could be a sign of adaptation; however, complexity during the second part could be a strategy to decrease the impact.