• Title/Summary/Keyword: weight constraint

Search Result 216, Processing Time 0.024 seconds

Optimization of structural elements of transport vehicles in order to reduce weight and fuel consumption

  • Kovacs, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.283-290
    • /
    • 2019
  • In global competition manufacturing companies have to produce modern, new constructions from advanced materials in order to increase competitiveness. The aim of my research was to develop a new composite cellular plate structure, which can be primarily used for structural elements of road, rail, water and air transport vehicles (e.g. vehicle bodies, ship floors). The new structure is novel and innovative, because all materials of the components of the newly developed structure are composites (laminated Carbon Fiber Reinforced Plastic (CFRP) deck plates with pultruded Glass Fiber Reinforced Plastic (GFRP) stiffeners), furthermore combines the characteristics of sandwich and cellular plate structures. The material of the structure is much more advantageous than traditional steel materials, due mainly to its low density, resulting in weight savings, causing lower fuel consumption and less environmental damage. In the study the optimal construction of a given geometry of a structural element of a road truck trailer body was defined by single- and multi-objective optimization (minimal cost and weight). During the single-objective optimization the Flexible Tolerance Optimization method, while during the multi-objective optimization the Particle Swarm Optimization method were used. Seven design constraints were considered: maximum deflection of the structure, buckling of the composite plates, buckling of the stiffeners, stress in the composite plates, stress in the stiffeners, eigenfrequency of the structure, size constraint for design variables. It was confirmed that the developed structure can be used principally as structural elements of transport vehicles and unit load devices (containers) and can be applied also in building construction.

Optimal Design for Weight Reduction of Rotorcraft Shaft System (회전익기의 축계 경량화를 위한 최적설계)

  • Kim, Jaeseung;Moon, Sanggon;Han, Jeongwoo;Lee, Geun-Ho;Kim, Min-Geun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.4
    • /
    • pp.243-248
    • /
    • 2022
  • Weight optimization was performed for a rotorcraft shaft system using one-dimensional Euler-Bernoulli beam elements. Torsion, shaft support stiffness such as bearings, flange mass are all considered. To guarantee structural dynamic stability, eigenvalue analysis was performed to avoid critical speed and tooth mesh excitation form the gearbox. The weight optimization was performed by adjusting the thickness and radius while the length of the shaft was fixed, and the optimization process was divided into two stages. In the first, the weight is optimized with the torsional strength constraint. In the second, the difference between the primary mode of shaft and the critical speed is maximized so that the primary mode of the shaft can avoid the critical speed while the constraint on the torsional strength of the shaft is satisfied according to the standard for shaft system stability (AMC P 706-201, 1974). The proposed method was verified by comparing the results of the optimal design using the given one-dimensional beam elements with the stress results of the 3D finite element and the actual manufactured shaft.

GENETIC ALGORITHMIC APPROACH TO FIND THE MAXIMUM WEIGHT INDEPENDENT SET OF A GRAPH

  • Abu Nayeem, Sk. Md.;Pal, Madhumangal
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.217-229
    • /
    • 2007
  • In this paper, Genetic Algorithm (GA) is used to find the Maximum Weight Independent Set (MWIS) of a graph. First, MWIS problem is formulated as a 0-1 integer programming optimization problem with linear objective function and a single quadratic constraint. Then GA is implemented with the help of this formulation. Since GA is a heuristic search method, exact solution is not reached in every run. Though the suboptimal solution obtained is very near to the exact one. Computational result comprising an average performance is also presented here.

Performance Analysis of Heuristic Algorithms for Consolidated Transportation with Weight and Volume Constraints (무게와 부피를 고려하는 경험적 공동수송 흔적 알고리듬의 성능분석)

  • Rim, Suk-Chul;Yoo, Youngjin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.1
    • /
    • pp.105-111
    • /
    • 2002
  • When transporting multiple items by trucks of various size, one needs to assign a group of items to each truck so as to minimize the total cost, while meeting the weight and volume constraint of each truck. In this paper, we formulate the problem as an integer programming problem and propose four heuristic algorithms for the problem. Computer simulation is used to evaluate the average performance of the four heuristic algorithms for the consolidated transportation problem.

Time Series Prediction Using a Multi-layer Neural Network with Low Pass Filter Characteristics (저주파 필터 특성을 갖는 다층 구조 신경망을 이용한 시계열 데이터 예측)

  • Min-Ho Lee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.66-70
    • /
    • 1997
  • In this paper a new learning algorithm for curvature smoothing and improved generalization for multi-layer neural networks is proposed. To enhance the generalization ability a constraint term of hidden neuron activations is added to the conventional output error, which gives the curvature smoothing characteristics to multi-layer neural networks. When the total cost consisted of the output error and hidden error is minimized by gradient-descent methods, the additional descent term gives not only the Hebbian learning but also the synaptic weight decay. Therefore it incorporates error back-propagation, Hebbian, and weight decay, and additional computational requirements to the standard error back-propagation is negligible. From the computer simulation of the time series prediction with Santafe competition data it is shown that the proposed learning algorithm gives much better generalization performance.

  • PDF

Durability Assessment of a Control Arm Using 1/4 Car Test (1/4차량 시험을 통한 상부 컨트롤 암의 내구성 평가)

  • Ha, Min-Soo;Son, Hwan-Jung;Kim, Jong-Kyu;Park, Young-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.16-20
    • /
    • 2010
  • This study proposes a structural design method for the upper control arm installed at the rear side of a SUV. The weight of control arm can be reduced by applying the design. In this research, the former includes optimization technology, and the latter the technologies for selecting aluminum as a steel-substitute material. Strength assessment is the most important design criterion in the structural design of a control arm. At the proto design stage of a new control arm, FE (finite element) analysis is often utilized to predict its strength. In this study, the kriging interpolation method is adopted to obtain the minimum weight satisfying the strength constraint and durability criteria. The optimum results determined from the in-house program are compared with those of ANSYS WORKBENCH. The durability assessment is obtained by a index of fatigue durability and trial & error method, MSC. Fatigue program.

An Study of Optimization on Vehicle Body Stiffness using CAE Application (CAE를 응용한 차체강성 최적화에 관한 연구)

  • 최명진;송명준;장승호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.129-134
    • /
    • 2001
  • One of the most important purposes in the design of machines and structures is to produce the most light products of the lowest price with satisfying function and performance. In this study, a scheme of design optimization for the weight down of vehicle body structure is presented. Design sensitivity of vehicle body structure is investigated and design optimization is performed to get weight down with the allowable stiffness of body in white. Stress, deformation and natural frequencies are the constraint of the optimization.

  • PDF

Cruise Missile Configuration Optimal Design Using Multidisciplinary Analysis (다분야통합 해석을 이용한 순항미사일 형상 최적설계)

  • Choi, Suk-Min;Lee, Seung-Jin;Lee, Jae-Woo;Byun, Young-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.38-42
    • /
    • 2007
  • In this study, cruise missile configuration is optimal designed by using multidisciplinary analysis. Aerodynamic, weight, performance and mission analysis modules are developed by FORTRAN and integrated with framework. Darwin algorithm, a global optimization tool, is used for optimization. In the result of optimal design, gross weight of designed configuration is reduced about 17% than baseline configuration while satisfying design constraint conditions.

  • PDF

Optimal Plastic Design of Planar Frames (평면(平面) Frame의 최적소성설계(最適塑性設計))

  • S.J.,Yim;S.H.,Hwang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.2
    • /
    • pp.1-10
    • /
    • 1980
  • The optimal plastic design of framed structures has been treated as the minimum weight design while satisfying the limit equilibrium condition that the structure may not fail in any of the all possible collapse modes before the specified design ultimate load is reached. Conventional optimum frame designs assume that a continuous spectrum of member size is available. In fact, the vailable sections merely consist of a finite range of discrete member sizes. Optimum frame design using discrete sections has been performed by adopting the plastic collapse theory and using the Complex Method of Box. This study has presented an iterative approach to the optimal plastic design of plane structures that involves the performance of a series of minimum weight design where the limit equilibrium equation pertaining to the critical collapse mode is added to the constraint set for the next design. The critical collapse mode is found by the collapse load analysis that is formulated as a linear programming problem. This area of research is currently being studied. This study would be applied and extended to design the larger and more complex framed structures.

  • PDF

Nonlinear Elastic Optimal Design Using Genetic Algorithm (유전자 알고리즘을 이용한 비선형 탄성 최적설계)

  • Kim, Seung Eock;Ma, Sang Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.197-206
    • /
    • 2003
  • The optimal design method in cooperation with a nonlinear elastic analysis method was presented. The proposed nonlinear elastic method overcame the drawback of the conventional LRFD method this approximately accounts for the nonlinear effect caused by using the moment amplification factors of and. The genetic algorithm uses a procedure based on the Darwinian notions of the survival of the fittest, where selection, crossover, and mutation operators are used to look for high performance among the sections of the database. They satisfy constraint functions and give the lightest weight to the structure. The objective function was set to the total weight of the steel structure. The constraint functions were load-carrying capacities, serviceability, and ductility requirement. Case studies for a two-dimensional frame, a three-dimensional frame, and a three-dimensional steel arch bridge were likewise presented.