• Title/Summary/Keyword: wedge effects

Search Result 139, Processing Time 0.036 seconds

Effects of Combined Wedge on Angle and Moment of Ankle and Knee Joint During Gait in Patients With Genu Varus

  • Yang, Hae Sun;Choi, Houng Sik
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.7 no.2
    • /
    • pp.1025-1030
    • /
    • 2016
  • The purpose of this study was to investigate the effects of combined wedge on the range of motion in ankle and knee joint, ankle eversion moment and knee adduction moment, and center of pressure excursion of foot for genu varus among adult men during gait. This study was carried out with 10 adult men for genu varus in a motion analysis laboratory in J university. The subjects of the experiment were measured above 5cm width between the knees on contact of both medial malleolus of ankle while standing. The width of their knees in neutral position was measured without the inversion or eversion of the subtalar joint by the investigator. The subjects of the experiment were ten who were conducted randomly for standard insole, insole with $10^{\circ}$ lateral on rear foot wedge, insole at $10^{\circ}$lateral on rear foot and $5^{\circ}$ medial on fore foot wedge. Before and after intervention, changes on the range of motion in ankle and knee joint, ankle eversion moment and knee adduction moment, and center of pressure excursion were measured. In order to compare analyses among groups; repeated one-way ANOVA and $Scheff{\acute{e}}$ post hoc test were used. As a result, combined wedge group was significantly decreased compared to control wedge group in terms of knee varus angle in mid-stance(p<.05). Combined wedge group was significantly decreased compared to lateral wedge group in terms of ankle eversion moment in whole stance(p<.05). Combined wedge group was significantly decreased compared to lateral wedge group in terms of knee adduction moment in whole stance(p<.05). Combined wedge group was significantly decreased compared to lateral wedge in terms of center of pressure excursion in whole stance(p<.05). The results of this study suggest that combined wedge for genu varus decreased ankle eversion moment and knee adduction moment upon center of pressure excursion. We hypothesize that combined wedge may also be effective in the protection excessive ankle pronation.

Numerical study of hydrodynamic interaction on a vessel in restricted waterways

  • Lee, Chun-Ki
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The hydrodynamic interaction between ship and bank can't be neglected when a vessel is app- roached toward the tip of a wedge-shaped bank in restricted waterways, such as in a harbor, near some fixed obstacles, or in a narrow channel. In this paper, the characteristic features of the hydrodynamic interaction acting on a slowly moving vessel in the proximity of a wedge-shaped bank are described and illustrated, and the effects of water depth and the spacing between ship and wedge-shaped bank are summarized and discussed based on the slender body theory. From the theoretical results, it indicated that the hydrodynamic interactions decrease as wedge-shaped bank of angle ${\beta}$ in-creases. For water depth to draft ratio less than about 2.0, the hydrodynamic interactions between ship and bank in-crease sharply as h/d decreases, regardless of the wedge-shaped bank of angle ${\beta}$. Also, for lateral separation more than about 0.2L between ship and wedge-shaped bank, it can be concluded that the bank effects decrease largely as the separation increases.

Experimental study on the effects of stern bulb arrangement on the slamming load

  • Park, Jongyeol;Choi, Ju Hyuck;Lee, Hyun-ho;Rhee, Shin Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.518-530
    • /
    • 2020
  • The present study concerns the stern slamming load of container carriers, with stern bulb arrangement variation. First, a series of wedge drop tests were conducted using simple wedge models with fixed deadrise angles, and tests with the cross-section models of practical container carrier sterns were followed. The deadrise angle of the simple wedge ranged from 0° to 10°. The pressure measurement results of the simple wedge drop tests were distributed between empirical formula and analytic solution, so the experimental setup was validated. In the cases of practical hull cross-sections, the water entry of the bulb prior to that of the transom resulted in characteristic water film generation and delayed pressure peak appearance. The trapped air between the bulbs damped the pressure in the twin skeg hull case, reducing the pressure peak and causing the pressure oscillation during water entry.

A Study on the Effects of Wedge Filter in Peripheral Dose Distribution (Wedge Filter가 주변선량분포에 주는 영향에 관한 연구)

  • Kang, Wee-Saing;Kim, Il-Han;Park, Charn-Il
    • Radiation Oncology Journal
    • /
    • v.3 no.2
    • /
    • pp.145-151
    • /
    • 1985
  • The peripheral dose distributions of wedge fields of Co-60 $\gamma-ray$ and 1 OMV x-ray were measured by the solid state detector controlled by means of semiautomatic water phentom system. The measurements were made on the principal plane parallel to the cross section of wedge filter (blade and ridge direction). For parallel motion of the detector to the beam axis the distance from the margin of radiation field at suface were 3, 5 and 10cm. For tranverse motion the depth of measurement were dm, 5, 10 and 15cm. The followings were drawn from the measurement. 1. The peripheral dose of the blade side of wedges was generally higher than that of the ridge side at symmetric point about beam axis. 2. In the superficial region phenomena of dose build-up appeared. 3. For Co-60 $\gamma-ray$ field, the peripheral dose did not monotonously decrease with the distance from the field margin but increase in some range, consequently showing a peak dose. 4. The peripheral dose did not only depend on radiation quality and field size, but also on wedge angle and wedge direction.

  • PDF

Effect of Differential Pressure on the Performance of Motor Operated Flexible Wedge Gate Valve (차압이 모터구동 Flexible Wedge형 게이트밸브의 성능에 미치는 영향)

  • Kim, Dae-Woong;Yoo, Seong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.151-158
    • /
    • 2007
  • The mechanism of power transmission from motor torque to stem thrust and the operation characteristic of each stroke position are analyzed using the diagnostic signal, and effects of differential pressure on the performance of motor operated flexible wedge gate valve are investigated. Test facility consists of 76 mm motor operated valve(flexible wedge type), pump and pipe system. Static and dynamic test are performed separately, and two differential pressure conditions are applied in the dynamic test. To evaluate the performance of valve, test signals for the torque, thrust, current, voltage and stroke length are acquired by using UDS which is diagnosis device for motor operated valve, and each diagnostic signal is analyzed and compared. The characteristic of valve performance factors such as stem factor, rate of loading, valve factor, are evaluated, and these factors are found to be severely influenced by the fluid differential pressure.

Effects of Medial, Lateral Wedge and Difference of Quadriceps Angle on Vastus Medialis Oblique/Vastus Lateralis Muscle Activity Ratios (내·외측 Wedge와 넙다리네갈래근 각의 차이가 안쪽빗넓은근/가쪽넓은근 비에 미치는 영향)

  • Yoo, Won-Gyu;Lee, Hyun-Ju;Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.12 no.2
    • /
    • pp.11-19
    • /
    • 2005
  • Patellofemoral pain syndrome (PFPS) is often attributed to malalignment and maltracking of patella within the patellofemoral joint. Most exercise for PFPS has focused on selectively strengthening the vastus medialis oblique muscle (VMO). This study was designed to identify the effect of medial, lateral wedge and difference of Quadriceps angle (Q-angle) on vastus medialis oblique/vastus lateralis muscle (VL) activity ratios. The subjects were twenty young adult males who had not experienced any knee injury. They were asked to perform isometric contraction exercises in three postures using medial and lateral wedge. The EMG activity of the VL and VMO were recorded in three postures by surface electrodes and normalized by %MVC values derived from seated, isometric knee extensions. The normalized EMG activity levels (%MVC) of the VL and VMO for the three postures of the lower extremities were compared using 2-way repeated measures ANOVA with 1 between-subject factor (group), and 1 within-subject factor (wedge). Results of repeated measures of ANOVA's revealed that the medial wedge isometric contraction exercise produced significantly greater EMG activity of VMO/VL ratios in Group I (Q-angle $18^{\circ}$ or less) (p<.05). But, the medial wedge isometric contraction exercise was no significant difference of VMO/VL ratios in Group II (Q-angle $19^{\circ}$ or more) (p>.05). These results have important implications for selective VMO muscle strengthening exercises in PFPS patients.

  • PDF

A Numerical Analysis of Gravity and Free Surface Effects on a Two-Dimensional Supercavitating Flow (2차원 초공동 유동의 중력과 자유표면 효과에 대한 수치해석)

  • Kim, Hyoung-Tae;Lee, Hyun-Bae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.435-449
    • /
    • 2014
  • The effects of the gravity field and the free surface on the cavity shape and the drag are investigated through a numerical analysis for the steady supercavitating flow past a simple two-dimensional body underneath the free surface. The continuity and the RANS equations are numerically solved for an incompressible fluid using a $k-{\epsilon}$ turbulence model and a mixture fluid model has been applied for calculating the multiphase flow of air, water and vapor using the method of volume of fluid and the Schnerr-Sauer cavitation model. Numerical solutions have been obtained for the supercavitating flow about a two-dimensional $30^{\circ}$ wedge in wide range of depths of submergence and inflow velocities. The results are presented for the cavity shape, especially the length and the width, and the drag of the wedge in comparison with those of the case for the infinite fluid flow neglecting the gravity and the free surface. The influences of the gravity field and the free surface on the aforementioned quantities are discussed. The length and the width of the supercavity are reduced and the centerline of the cavity rises toward the free surface due to the effects of the gravity field and the free surface. The drag coefficient of the wedge, however, is about the same except for shallow depths of submergence. As the supercavitating wedge is approaching very close to the free surface, it is found the length and the width of a cavity are shorten even though the cavitation number is reduced. Also the present result suggests that, under the influence of the gravity field and the free surface, the length of the supercavity for a certain cavitation number varies and moreover is proportional to the inverse of the submergence depth Froude number.

The effects of increased unilateral and bilateral calcaneal eversion on pelvic and trunk alignment in standing position

  • Yi, Jaehoon
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.2
    • /
    • pp.84-88
    • /
    • 2016
  • Objective: Generally, it is known that there is a correlation between excessive calcaneus eversion and a patient with low back pain and it also affects pelvic alignment. However, there are not enough studies that show calcaneal eversion having an effect on the alignment of the trunk. Design: Cross-sectional study. Methods: A 3-dimensional motion analysis system was used to assess the lower limbs, pelvic alignment, and trunk alignment with increased unilateral and bilateral calcaneal eversion in twenty-one subjects. All subjects were asked to maintain a static posture for seven seconds on a wedge three times per posture for measurement and analysis purposes. The wedge used in the process was a lateral wedge with a 10-degree tilt to the lateral direction. To unify all of the subjects' foot position, the front and inner side of the wedge were marked. The height of the tilted wedge's inner side and flat wedge were balanced equally in order to be able to maintain the lateral part of the foot to the same height when producing an increased calcaneal eversion. Results: Comparing the changes in trunk and pelvic alignment in accordance to calcaneal eversion for each posture, there was a significant different in the X and Y-axis for each posture, but not in the Z-axis (p<0.05). Thus, it can be confirmed that calcaneal eversion in the sagittal plane and frontal plane may have and effect on the pelvis and the trunk. Conclusions: Postures with increased bilateral and unilateral calcaneal eversion has an effect on pelvic alignment, but does not cause any changes in trunk alignment.

Hypersonic Viscous Interaction of Wedge Flows (극초음속 쐐기 유동의 Viscous Interaction)

  • Kim K. H.;Rho O. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.40-45
    • /
    • 1996
  • This paper discribes the viscous interaction of Hypersonic Wedge Flows using Roe FDS and AUSM+. For this purpose we developed the frozen and the equilibrium code and numerically simulated the viscous interaction by changing the surface temperature and the mach number. We used curve fitting data in NASA Reference Publication 1181, 1260 to calculate equilibrium properties. We compare the equilibrium flow with the frozen flow. We conclude that the mach number and the surface temperature are significant parameters, as the surface temperature and the mach number increase the viscous interaction becomes stronger, and we must consider high-temperature effects in hypersonic flow

  • PDF