• Title/Summary/Keyword: web plate with openings

Search Result 12, Processing Time 0.016 seconds

Simplified method for prediction of elastic-plastic buckling strength of web-post panels in castellated steel beams

  • Liu, Mei;Guo, Kangrui;Wang, Peijun;Lou, Chao;Zhang, Yue
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.671-684
    • /
    • 2017
  • Elastic-plastic shear buckling behaviors of the web-post in a Castellated Steel Beam (CSB) with hexagonal web openings under vertical shear force were investigated further using Finite Element Model (FEM) based on a sub-model, which took the upper part of the web-post under horizontal shear force to represent the whole web-post under vertical shear force. A simplified design method for the web-post elastic-plastic shear buckling strength was proposed based on simulation results of the sub-model. Proper boundary conditions were applied to the sub-model to assure that its behaviors were identical to those of the whole web-post. The equation to calculate the thin plate elastic shear buckling strength was adopted as the basic form to build the design equation for elastic-plastic buckling strength of the sub-model. Parameters that might affect the elastic-plastic shear buckling strength of the whole web-post were studied. After obtaining the vertical shear buckling strength of a sub-model through FEM, the shear buckling coefficient k can be obtained through the back analysis. A practical calculation method for k was proposed through curving fitting the parameter study results. The elastic-plastic shear buckling strength of the web-post calculated using the proposed shear buckling coefficient k agreed well with that obtained from the FEM and test results. And it was more precise than those obtained from EC3 based on the strut model.

Flexural Capacity of the Profiled Steel Composite Beams -Deep Deck Plate- (강판성형 합성보의 휨성능 평가 -춤이 깊은 합성데크-)

  • Heo, Byung Wook;Kwak, Myong Keun;Bae, Kyu Woong;Jeong, Sang Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.247-258
    • /
    • 2007
  • This paper describes the results of an experimental study on the new type of encased composite beams that use deep deck plates, which could reduce the story height of buildings by controlling the bottom flange of steel beams. The profiled steel beam was thus developed. It was advantageous to the long span of the buildings. Seven full-scale specimens were constructed, and simply supported bending tests were conducted on the encased composite beams with different steel plate thicknesses, with and without shear studs, reinforcing bars, and web openings. The test results showed that the encased composite beams that were developed in this study had sufficient composite action without additional shear connectors due to their inherent shear-bond effects between the steel beams and concrete.