• Title/Summary/Keyword: web content

Search Result 1,154, Processing Time 0.022 seconds

Quality Characteristics of Jochung Containing Various Level of Letinus edodes Powder (표고버섯 가루를 이용한 조청의 품질 특성)

  • Park, Jung-Suk;Na, Hwan-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.768-775
    • /
    • 2005
  • Lentinus edodes powder was added at 1-3%(w/w) to improve functional properties of jocheong. Content of crude protein, ash, crude lipids, total mineral, free sugar and reducing sugar increased with increasing amount of L. edodes powder, while viscosity and solid and carbohydrate contents decreased. Through amino acid analysis, 17 amino acids were identified and quantified, glutamic acid being the major amino acid. No significant differences were observed in fatty acid composition and pH between control and L. edodes powder-added jocheong. Addition of mushroom powder in jocheong decreased lightness, yellowness and redness in Hunter's color value. Sensor score of jucheong containing 1% of L. edodes powder was similar to that of control. Results showed jocheong containing less than 2% L. edodes powder gave highest scores in quality characteristics and sensory evaluation.

Ontology Design for the Register of Officials(先生案) of the Joseon Period (조선시대 선생안 온톨로지 설계)

  • Kim, Sa-hyun
    • (The)Study of the Eastern Classic
    • /
    • no.69
    • /
    • pp.115-146
    • /
    • 2017
  • This paper is about the research on ontology design for a digital archive of seonsaengan(先生案) of the Joseon Period. Seonsaengan is the register of staff officials at each government office, along with their personal information and records of their transfer from one office to another, in addition to their DOBs, family clan, etc. A total of 176 types of registers are known to be kept at libraries and museums in the country. This paper intends to engage in the ontology design of 47 cases of such registers preserved at the Jangseogak Archives of the Academy of Korean Studies (AKS) with a focus on their content and structure including the names of the relevant government offices and posts assumed by the officials, etc. The work for the ontology design was done with a focus on the officials, the offices they belong to, and records about their transfers kept in the registers. The ontology design categorized relevant resources into classes according to the attributes common to the individuals. Each individual has defined a semantic postposition word that can explicitly express the relationship with other individuals. As for the classes, they were divided into eight categories, i.e. registers, figures, offices, official posts, state examination, records, and concepts. For design of relationships and attributes, terms and phrases such as Dublin Core, Europeana Data Mode, CIDOC-CRM, data model for database of those who passed the exam in the past, which are already designed and used, were referred to. Where terms and phrases designed in existing data models are used, the work used Namespace of the relevant data model. The writer defined the relationships where necessary. The designed ontology shows an exemplary implementation of the Myeongneung seonsaengan(明陵先生案). The work gave consideration to expected effects of information entered when a single registered is expanded to plural registers, along with ways to use it. The ontology design is not one made based on the review of all of the 176 registers. The model needs to be improved each time relevant information is obtained. The aim of such efforts is the systematic arrangement of information contained in the registers. It should be remembered that information arranged in this manner may be rearranged with the aid of databases or archives existing currently or to be built in the future. It is expected that the pieces of information entered through the ontology design will be used as data showing how government offices were operated and what their personnel system was like, along with politics, economy, society, and culture of the Joseon Period, in linkage with databases already established.

System Development for Measuring Group Engagement in the Art Center (공연장에서 다중 몰입도 측정을 위한 시스템 개발)

  • Ryu, Joon Mo;Choi, Il Young;Choi, Lee Kwon;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.45-58
    • /
    • 2014
  • The Korean Culture Contents spread out to Worldwide, because the Korean wave is sweeping in the world. The contents stand in the middle of the Korean wave that we are used it. Each country is ongoing to keep their Culture industry improve the national brand and High added value. Performing contents is important factor of arousal in the enterprise industry. To improve high arousal confidence of product and positive attitude by populace is one of important factor by advertiser. Culture contents is the same situation. If culture contents have trusted by everyone, they will give information their around to spread word-of-mouth. So, many researcher study to measure for person's arousal analysis by statistical survey, physiological response, body movement and facial expression. First, Statistical survey has a problem that it is not possible to measure each person's arousal real time and we cannot get good survey result after they watched contents. Second, physiological response should be checked with surround because experimenter sets sensors up their chair or space by each of them. Additionally it is difficult to handle provided amount of information with real time from their sensor. Third, body movement is easy to get their movement from camera but it difficult to set up experimental condition, to measure their body language and to get the meaning. Lastly, many researcher study facial expression. They measures facial expression, eye tracking and face posed. Most of previous studies about arousal and interest are mostly limited to reaction of just one person and they have problems with application multi audiences. They have a particular method, for example they need room light surround, but set limits only one person and special environment condition in the laboratory. Also, we need to measure arousal in the contents, but is difficult to define also it is not easy to collect reaction by audiences immediately. Many audience in the theater watch performance. We suggest the system to measure multi-audience's reaction with real-time during performance. We use difference image analysis method for multi-audience but it weaks a dark field. To overcome dark environment during recoding IR camera can get the photo from dark area. In addition we present Multi-Audience Engagement Index (MAEI) to calculate algorithm which sources from sound, audience' movement and eye tracking value. Algorithm calculates audience arousal from the mobile survey, sound value, audience' reaction and audience eye's tracking. It improves accuracy of Multi-Audience Engagement Index, we compare Multi-Audience Engagement Index with mobile survey. And then it send the result to reporting system and proposal an interested persons. Mobile surveys are easy, fast, and visitors' discomfort can be minimized. Also additional information can be provided mobile advantage. Mobile application to communicate with the database, real-time information on visitors' attitudes focused on the content stored. Database can provide different survey every time based on provided information. The example shown in the survey are as follows: Impressive scene, Satisfied, Touched, Interested, Didn't pay attention and so on. The suggested system is combine as 3 parts. The system consist of three parts, External Device, Server and Internal Device. External Device can record multi-Audience in the dark field with IR camera and sound signal. Also we use survey with mobile application and send the data to ERD Server DB. The Server part's contain contents' data, such as each scene's weights value, group audience weights index, camera control program, algorithm and calculate Multi-Audience Engagement Index. Internal Device presents Multi-Audience Engagement Index with Web UI, print and display field monitor. Our system is test-operated by the Mogencelab in the DMC display exhibition hall which is located in the Sangam Dong, Mapo Gu, Seoul. We have still gotten from visitor daily. If we find this system audience arousal factor with this will be very useful to create contents.

KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon (Bi-LSTM 기반의 한국어 감성사전 구축 방안)

  • Park, Sang-Min;Na, Chul-Won;Choi, Min-Seong;Lee, Da-Hee;On, Byung-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.219-240
    • /
    • 2018
  • Sentiment analysis, which is one of the text mining techniques, is a method for extracting subjective content embedded in text documents. Recently, the sentiment analysis methods have been widely used in many fields. As good examples, data-driven surveys are based on analyzing the subjectivity of text data posted by users and market researches are conducted by analyzing users' review posts to quantify users' reputation on a target product. The basic method of sentiment analysis is to use sentiment dictionary (or lexicon), a list of sentiment vocabularies with positive, neutral, or negative semantics. In general, the meaning of many sentiment words is likely to be different across domains. For example, a sentiment word, 'sad' indicates negative meaning in many fields but a movie. In order to perform accurate sentiment analysis, we need to build the sentiment dictionary for a given domain. However, such a method of building the sentiment lexicon is time-consuming and various sentiment vocabularies are not included without the use of general-purpose sentiment lexicon. In order to address this problem, several studies have been carried out to construct the sentiment lexicon suitable for a specific domain based on 'OPEN HANGUL' and 'SentiWordNet', which are general-purpose sentiment lexicons. However, OPEN HANGUL is no longer being serviced and SentiWordNet does not work well because of language difference in the process of converting Korean word into English word. There are restrictions on the use of such general-purpose sentiment lexicons as seed data for building the sentiment lexicon for a specific domain. In this article, we construct 'KNU Korean Sentiment Lexicon (KNU-KSL)', a new general-purpose Korean sentiment dictionary that is more advanced than existing general-purpose lexicons. The proposed dictionary, which is a list of domain-independent sentiment words such as 'thank you', 'worthy', and 'impressed', is built to quickly construct the sentiment dictionary for a target domain. Especially, it constructs sentiment vocabularies by analyzing the glosses contained in Standard Korean Language Dictionary (SKLD) by the following procedures: First, we propose a sentiment classification model based on Bidirectional Long Short-Term Memory (Bi-LSTM). Second, the proposed deep learning model automatically classifies each of glosses to either positive or negative meaning. Third, positive words and phrases are extracted from the glosses classified as positive meaning, while negative words and phrases are extracted from the glosses classified as negative meaning. Our experimental results show that the average accuracy of the proposed sentiment classification model is up to 89.45%. In addition, the sentiment dictionary is more extended using various external sources including SentiWordNet, SenticNet, Emotional Verbs, and Sentiment Lexicon 0603. Furthermore, we add sentiment information about frequently used coined words and emoticons that are used mainly on the Web. The KNU-KSL contains a total of 14,843 sentiment vocabularies, each of which is one of 1-grams, 2-grams, phrases, and sentence patterns. Unlike existing sentiment dictionaries, it is composed of words that are not affected by particular domains. The recent trend on sentiment analysis is to use deep learning technique without sentiment dictionaries. The importance of developing sentiment dictionaries is declined gradually. However, one of recent studies shows that the words in the sentiment dictionary can be used as features of deep learning models, resulting in the sentiment analysis performed with higher accuracy (Teng, Z., 2016). This result indicates that the sentiment dictionary is used not only for sentiment analysis but also as features of deep learning models for improving accuracy. The proposed dictionary can be used as a basic data for constructing the sentiment lexicon of a particular domain and as features of deep learning models. It is also useful to automatically and quickly build large training sets for deep learning models.