• Title/Summary/Keyword: weathervane

Search Result 2, Processing Time 0.016 seconds

A genetic algorithms optimization framework of a parametric shipshape FPSO hull design

  • Xie, Zhitian;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.11 no.4
    • /
    • pp.301-312
    • /
    • 2021
  • An optimization framework has been established and applied to a shipshape parametric FPSO hull design. A single point moored (SPM) shipshape floating system suffers a significant level of the roll motion in both the wave frequencies and low wave frequencies, which presents a coupling effect with the horizontal weathervane motion. To guarantee the security of the operating instruments installed onboard, a parametric hull design of an FPSO has been optimized with improved hydrodynamics performance. With the optimized parameters of the various hull stations' longitudinal locations, the optimization through Genetic Algorithms (GAs) has been proven to provide a significantly reduced level of the 1st-order and 2nd-order roll motion. This work presents a meaningful framework as a reference in the process of an SPM shipshape floating system's design.

Turret location impact on global performance of a thruster-assisted turret-moored FPSO

  • Kim, S.W.;Kim, M.H.;Kang, H.Y.
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.265-287
    • /
    • 2016
  • The change of the global performance of a turret-moored FPSO (Floating Production Storage Offloading) with DP (Dynamic Positioning) control is simulated, analyzed, and compared for two different internal turret location cases; bow and midship. Both collinear and non-collinear 100-yr GOM (Gulf of Mexico) storm environments and three cases (mooring-only, with DP position control, with DP position+heading control) are considered. The horizontal trajectory, 6DOF (degree of freedom) motions, fairlead mooring and riser tension, and fuel consumptions are compared. The PID (Proportional-Integral-Derivative) controller based on LQR (linear quadratic regulator) theory and the thrust-allocation algorithm which is based on the penalty optimization theory are implemented in the fully-coupled time-domain hull-mooring-riser-DP simulation program. Both in collinear and non-collinear 100-yr WWC (wind-wave-current) environments, the advantage of mid-ship turret is demonstrated by the significant reduction in heave at the turret location due to the minimal coupling with pitch mode, which is beneficial to mooring and riser design. However, in the non-collinear WWC environment, the mid-turret case exhibits unfavorable weathervaning characteristics, which can be reduced by employing DP position and heading controls as demonstrated in the present case studies. The present study also reveals the plausible cause of the failure of mid-turret Gryphon Alpha FPSO in milder environment than its survival condition.