• Title/Summary/Keyword: weathering process

Search Result 181, Processing Time 0.023 seconds

Weathering Properties in Deposits of Fluvial Terrace at Bukhan River, Central Korea (북한강 하안단구 퇴적층의 풍화 특성)

  • 이광률
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.3
    • /
    • pp.425-443
    • /
    • 2004
  • Fluvial terraces is poorly developed along Bukhan River in Central Korea. Altitude from riverbed of T1 terraces are 18-29m, T2 terraces 2539m, respectively. Rubification index of T2 is 0.66, T1 is 0.54, and thickness of gravel weathering rind on gneiss of T2 are 14.0mm, granites of T2 are $\infty$, gneiss of T1 are 5.0mm and granites of T2 are 8.0mm, because weathering in deposits of T2 terraces, older than T1, is severer than T1 terraces. Since deposits in T2 have more active and longer weathering than T1, SiO$_2$/Al$_2$O$_3$ is 3.32 in T2 and 4.06 in T1, and SiO$_2$/R$_2$O$_3$ is 2.64 in T2 and 3.19 in T1. CIA(Chemical Index of Alteration) is 87.85% in T2 and 85.88% in T1. Kaolinite and halloysite are founded in deposits of T2 indicating high weathering, and are founded gibbsite made tv eluviation of kaolinite. However, deposits of T1 have no kaolinite, and are found plagioclase, weak mineral in weathering process. Comparing to previous researches by estimated age as altitude from riverbed, rubification index, thickness of gravel weathering rind, element contents and mineral composition, forming age of T2 terraces in Bukhan River are estimated in marine oxygen isotope stage 6 (130-190ka), and T1 terraces are marine oxygen isotope stage 4(59-74ka).

Relative Movement of Major Elements on the Weathering of Rocks (암석의 풍화에 따르는 주요성분의 상대적 이동)

  • Nam, Ki-Sang;Cho, Kyu-Seong
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.67-81
    • /
    • 1993
  • This dissertation is a basic research on the degradation of rocks and aims at clarifying the relations between the progression of degree of weathering and the variation of chemical composition. The author wants to make clear the degradation of rocks and the process of formation of sedimentary rocks from a standpoint of elucidation of migration of elements. This study is considered to be significant not only as a part of research on the distribution of earth crust materials but as the petrogenesis of rocks. The chemical studies on the weathered rocks have been started relatively early and there are not a few researches on them: Goldich, 1938; Harris, et al., 1966; Ruxton, 1968; Berner, et al., 1982; Kanuss, 1983; Lasaga, 1984; Siagel, 1984. The degree of migration of elements in weathering is the composite result of various factors. Because, at the present time, it is difficult to clarify the individual and composite effects of each factor theoretically and quanititatively, we must accumulate empirical data and use them relatively. In such consideration the author acquired some data of chemical weathering from the chemical analysis of granitic and basaltic rocks in and around Fukuoka city, Japan and granitic rocks in and around Chonju and Iri cities, Korea. Because both rock types studied can be considered as representative materials of acidic and basic rocks compsing the earth crust, it is significant to examine the phenomena of weathering of both rock types. The following results are obtained from the analysis and examinations of chemical compositions of the original and weathered rocks. The loss rate of major elements has no uniformity, but the following relation holds in general; Ca, Na> K, Si> Mg> Fe, Al. As weathering proceeds, the ratio of $Al_2O_3/CaO$ shows increasing phenomena, and that of $Na_2O/CaO$ decreasing. The range of migration of composition is broad in basaltic rocks but narrow in granitic rocks. The reason is that the chemical weathering of basaltic rocks progresses more easily than that of granitic rocks. The chemical weathering potenitial index of basaltic rocks in larger than that of granitic rocks. The reason is that the chemical weathering of basaltic rocks proceeds more easily than that of granitic rocks. In weathering, the decrease of mobile cations such as $Ca^{2+}$, $Na^{2+}$, $Mg^{2+}$ and the increase of $H_2O$ in basaltic rocks are more obvious than in granitic rocks.

  • PDF

Characterization of Microtextures formed by Chemical Weathering in Crystalline Rocks and Implications for Rock Mechanics (화학적 풍화에 의한 결정질 암석내의 미세조직 발달특징과 암반공학적 의미)

  • Choo, Chang-Oh;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.381-391
    • /
    • 2011
  • Weathering can reduce rock strength and eventually affect the structural stability of a rock mass, which is important in the field of engineering geology. Several methods have been developed to evaluate the degree of weathering, including the chemical weathering index. In this study, we analyzed the weathering degree and characteristics of microtextures and pores in crystalline rocks (gneiss and granites) based on petrographic observations, the chemical weathering index, mineralogy by XRD, microtextural analysis by SEM/EDS, measurements of pore size and surface area by the BET method, and microporosity by X-ray CT. The formation of secondary minerals and microtexture in gneiss and granitic rocks are assumed to be affected by complex processes such as dissolution, precipitation, and fracturing. Hence, it is clear that some chemical weathering indices that are based solely on whole-rock chemistry (e.g., CIA and CWI) are unable to provide reliable assessments of the degree of weathering. Great care is needed to evaluate the degree of chemical weathering, including an understanding of the mineralogy and microtexture of the rock mass, as well as the characteristics of micropores.

통계분석을 이용한 소규모 유역내 하천수 수질과 지질과의 상관관계 해석

  • 고경석;김재곤;이진수;김용제;조춘희
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.311-314
    • /
    • 2004
  • To identify the effect of geology and land use, the hydrogeochemical and multivariate statitstical analysis were executed for stream water collected in headwater region of Daecheong reservoir. Hydrogeochemical analysis was showed the effect of weathering process such as dissolution of calc-silicate minerals to hydrochemistry of stream water with contrasting geology. Cluster and principal components analysis can also help to identify the source of dissolved components in stream water.

  • PDF

Atmospheric Corrosion Process for Weathering Steel

  • Nagano, Hiroo;Yamashita, Masato
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.119-124
    • /
    • 2008
  • Steel is generally not corrosion resistant to water with formation of non protective rusts on its surface. Rusts are composed of iron oxides such as $Fe_3O_4$, $\alpha-$, $\beta-$, $\gamma-$and ${\delta}-FeOOH$. However, steel, particularly weathering steel containing small amounts of Cu, Ni and Cr etc., shows good corrosion resistance against rural, industrial or marine environment. Its corrosion rate is exceedingly small as compared with that of carbon steel. According to the exposure test results undertaken in outdoor environments, the atmospheric corrosion rate for weathering steel is only 1 mm for a century. Atmospheric corrosion for steels proceeds under alternate dry and wet conditions. Dry condition is encountered on steel surface on fine or cloudy days, and wet condition is on rainy or snowy days. The reason why weathering steel shows superior atmospheric corrosion resistance is due to formation of corrosion protective rusts on its surface under very thin water layer. The protective rusts are usually composed of two layer rusts; the upper layer is ${\gamma}-FeOOH$ termed as lepidocrocite, and inner layer is nano-particle ${\alpha}-FeOOH$ termed as goethite. This paper is aimed at elucidating the atmospheric corrosion mechanism for steel in comparison with corrosion in bulky water environment by use of empirical data.The summary is as follows: 1. No corrosion protective rusts are formed on steel in bulky water. 2. Atmospheric corrosion for steel is the corrosion under wetting and drying conditions. Corrosion and passivation occur alternately on steel surface. Steel, particularly weathering steel with small amounts of alloying elements such as Cu, Ni and Cr etc. enhances forming corrosion protective rusts by passivation.

Failure Zone Estimation from the correlation between the Temperature in Slope and the Soil Nail Strain (지중온도와 변형율과의 상관관계를 통한 활동영역의 추정)

  • Chang, Ki-Tae
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.3
    • /
    • pp.123-130
    • /
    • 2005
  • It is necessary, in the light of the importance of long-term slope stability problem, to develop a simple method or tool which can figure out the possible failure zone resulted from weathering effect and other factors. The FBG sensor system is used to estimate the correlations between the temperature and the slope in Kimhae, and to find a failure zone in slopes effectively. This research is to seek for the correlation between the soil temperature distribution and the strain distribution in a active zone by analyzing the data from the in-situ measurement so that the possible failure zone should be well defined based on the correlation. For instance, the zone of high temperature fluctuation can be regarded as one of the possible sliding zone due to the weathering effect while the constant temperature depth of the ground, if exists would not be relatively affected by the weathering process.

  • PDF

Deformation Estimation of Slope Reinforced Materials by Rain and Temperature (사면보강재의 강우 및 온도에 의한 변형 해석)

  • 홍성진;장기태;한희수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.643-650
    • /
    • 2002
  • It is necessary, in the light of the importance of long-term slope stability problem, to develop a simple method or tool which can figure out the possible failure zone resulted from weathering effect and other factors. The FBG sensor system is used to estimate the correlations between the temperature and the slope in Yunhwajae, and to find a failure zone in slopes effectively. This research is to seek for the correlation between the soil temperature distribution and the strain distribution in a active zone by analyzing the data from the in-situ measurement so that the possible failure zone should be well defined based on the correlation. The zone of high temperature fluctuation can be regarded as one of the possible sliding zone due to the weathering effect while the constant temperature depth of the ground, if exists, would not be relatively affected by the weathering process.

  • PDF

Weathering and Degradation Assessment of Rock Properties at the West Stone Pagoda, Gameunsaji Temple Site, Korea

  • Lee, Chan Hee;Lee, Myeong Seong;Kim, Jiyoung
    • Conservation and Restoration of Cultural Heritage
    • /
    • v.1 no.1
    • /
    • pp.29-37
    • /
    • 2012
  • The West Stone Pagoda at Gameunsaji Temple Site constructed in the 7th century is mainly composed of dark grey dacitic tuff bearing small numerous dioritic xenoliths. These xenoliths resulted in small holes due to differential weathering process from the host rocks. Physical strength of the pagoda was decreased due to weathering and damage caused by petrological, biological and coastal environmental factors. The southeastern part of the pagoda was extremely deteriorated that the rock surface showed exfoliation, fracture, open cavity, granular decomposition of minerals and salt crystallization by seawater spray from the eastern coast. The stone blocks were intersected by numerous cracks and contaminated by subsequent material such as cement mortar and iron plates. Also, the pagoda was colonized by algae, fungi, lichen and bryophytes on the roof rock surface and the gaps between the blocks. As a result of ultrasonic test, the rock materials fell under Highly Weathered Grade (HW) or Completely Weathered Grade (CW). Thus, conservational intervention is essentially required to prevent further weakening of the rock materials.

Dynamic Characteristics of Decomposed Granite Soils by Changing Geoenvironment (지반환경 변화에 따른 화강토의 동적특성)

  • Lee, Jin-Soo;Lee, Kang-Il;Kim, Kyung-Jin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.41-52
    • /
    • 2014
  • Decomposed granite soil is likely to lose its strength when exposed to air or water. Such a geomaterial is weathered by wetting-drying or freezing-melting. In this study, resonant column tests were conducted to figure out the dynamic characteristics of granite soil that has affected by environmental changes like weathering condition. The results show that wetting-drying weathering condition is the most affective parameter on the dynamic characteristics of granite soil. In the meantime, artificial weathering conditions such as freezing-melting has less affection at first and getting increase as the process repeats constantly.

A Study on the Moisture Adsorption and Permeability Characteristics of Weathered Granite Soils (화강토의 풍화도가 수분흡착 및 침투성에 미치는 영향)

  • 이대훈;도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.3
    • /
    • pp.81-89
    • /
    • 1984
  • To examine the moisture adsorption and permeability characteristics, weathered granite soils of different degrees of weathering, cultivated upland soils and sands of Han-river were sampled. The results are as follows: 1. In case that the mother rock was same, the pF values under same moisture content decreased according as the grain size of soil became finer by the weathering process. 2. In case that the mother rock was different, the pF value varied by the behavior of clay minerals, and the cultivated upland soils showed more sensitive reaction than sands and fresh granite soils. 3. The pF value changed by the difference of primary moisture content and also influenced by soil structure, testing method and etc. 4. The pF value and compaction curve had close relation, however under same moisture content, the pF value decreased by the increment of density. 5. The permeability depend on the available void ratio between the soil particles according to the degree of weathering, and the pF value of available void water between the soil particles which related directly to permeability was about 3.3 except the void water holded in the soil particles. 6. As the above, the pF value and permeability were differentiated by degree of weathering, primary moisture content, density and etc. Therefore it is considered unreasonable to define uniformly by soil texture.

  • PDF