• 제목/요약/키워드: weather signal

검색결과 158건 처리시간 0.029초

강화신호를 이용한 건물공조시스템의 최적제어에 관한 연구 (A Study of Optimum Control in Building HVAC System using Reinforce Signal)

  • 조성환;양성희;양훈철
    • 설비공학논문집
    • /
    • 제16권11호
    • /
    • pp.1068-1076
    • /
    • 2004
  • Technology on the proportional integral (PI) control have grown rapidly owing to the needs for the robust capacity of the controllers from industrial building sectors. However, PI controller requires tuning of gains for optimal control when the outside weather condition changes. The present study presents the possibility of reinforcement learning (RL) control algorithm with PI controller adapted in the HVAC system. The optimal design criteria of RL controller was proposed in the Environment Chamber experiment and a theoretical analysis was also conducted using TRNSYS program.

학습 횟수 조절 신경 회로망을 이용한 영상 신호의 벡터 양자화 (Vector Quantization of Image Signal using Larning Count Control Neural Networks)

  • 유대현;남기곤;윤태훈;김재창
    • 전자공학회논문지C
    • /
    • 제34C권1호
    • /
    • pp.42-50
    • /
    • 1997
  • Vector quantization has shown to be useful for compressing data related with a wide rnage of applications such as image processing, speech processing, and weather satellite. Neural networks of images this paper propses a efficient neural network learning algorithm, called learning count control algorithm based on the frquency sensitive learning algorithm. This algorithm can train a results more codewords can be assigned to the sensitive region of the human visual system and the quality of the reconstructed imate can be improved. We use a human visual systrem model that is a cascade of a nonlinear intensity mapping function and a modulation transfer function with a bandpass characteristic.

  • PDF

Estimation of Discharge for the Amazon River Branches with Wavelet Analysis

  • Katabira, Kyoichiro;Ogawa, Susumu;Sakurai, Takako;Takagi, Mikio
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.346-348
    • /
    • 2003
  • In this study, we attempted to estimate the discharge of the Amazon River branches from JERS-1/SAR images, which are independent of the weather. We visualized some traces of the Amazon River branches, transformed river shapes into a one-dimensional signal, and calculated the characteristics of the river shapes such as the meandering wavelength and the amplitude with Fourier and wavelet analysis. Then, we related the characteristics of the river shapes with the existing discharge data and derived some regression equations. Finally, we estimated the discharge of the Amazon River branches from the SAR images.

  • PDF

SAR Processing Software for Ground Station

  • Kwak, Sung-Hee;Lee, Young-Ran;Shin, Dong-Seok;Park, Won-Kyu
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.634-636
    • /
    • 2003
  • Satrec Initiative (Si) is developing a ground processing system for Synthetic Aperture Radar (SAR) data. SAR provides its own illumination and is not dependent on the light from sun, thus permitting continuous day/night operation and all-weather imaging. The system is capable of producing standard level products from SAR signal. Hence, the system should be able to perform matched filtering, range compression, azimuth compression, multi-look image generation, and geocoded image generation. This paper will describe the processing steps including algorithms, design, and accuracy of the Si's SAR processing system by comparing with commercial software.

  • PDF

탄환 충격파 측정용 방수 음향센서 개발 (Development of Waterproof Acoustic Sensor for Shockwave Measurement)

  • 허신;이덕규
    • 센서학회지
    • /
    • 제28권5호
    • /
    • pp.318-322
    • /
    • 2019
  • In shooting training, an impact point identification system that uses the impact wave of the bullet to check the impact point in the target plate has been recently used. Acoustic sensors used in these systems must be able to detect shock waves of high sound pressure levels and be both waterproof and dustproof for rainy weather and dusty environments, respectively. In this study, membranes with excellent waterproof, dustproof, and sound transmitting characteristics were selected through a characteristics test; a protection cap was installed to install the selected materials. After coupling the produced protection cap to the acoustic sensor housing, the sensitivity and phase characteristics of the acoustic sensor were checked. Through the waterproof and dustproof test, the performances of its sensitivity and phase characteristics were confirmed. Finally, the normal shockwave of a 5.56 mm diameter bullet was measured using a shockwave detection signal collecting plate equipped with a prototype of the acoustic sensor at a 100 m firing range.

Performance Analysis of an AF Dual-hop FSO Communication System with RF Backup Link

  • Alhamawi, Khaled A.;Altubaishi, Essam S.
    • Current Optics and Photonics
    • /
    • 제3권4호
    • /
    • pp.311-319
    • /
    • 2019
  • A hybrid free-space-optical/radio-frequency (FSO/RF) communication system is considered, with the help of amplify-and-forward (AF) relaying. We consider various weather conditions to investigate their effects on the system's performance. We begin by obtaining the cumulative distribution function and probability density function of the end-to-end signal-to-noise ratio for the AF dual-hop FSO communication system with RF backup link. Then, these results are used to derive closed-form expressions for the outage probability, average bit-error rate, and average ergodic capacity. The results show that the considered system efficiently employs the complementary nature of FSO and RF links, resulting in impressive performance improvements compared to non-hybrid systems.

Influence of HAPS and GEO Satellite under SANDU Layering and Gas Attenuations

  • Harb, Kamal
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12호
    • /
    • pp.93-100
    • /
    • 2021
  • Satellite communication for high altitude platform stations (HAPS) and geostationary orbit (GEO) systems suffers from sand and dust (SANDU) storms in desert and arid regions. The focus of this paper is to propose common relations between HAPS and GEO for the atmospheric impairments affecting the satellite communication networks operating above Ku-band crossing the propagation path. A double phase three-dimensional relationship for HAPS and GEO systems is then presented. The comparison model present the analysis of atmospheric attenuation with specific focus on sand and dust based on particular size, visibility, adding gas effects for different frequency, and propagation angle to provide systems' operations with a predicted vision of satellite parameters' values. Thus, the proposed system provides wide range of selecting applicable parameters, under different weather conditions, in order to achieve better SNR for satellite communication.

NB-IoT 기술에서 Multiple Linear Regression Model을 활용하여 OTDOA 기반 포지셔닝 정확도 최적화 (Optimize OTDOA-based Positioning Accuracy by Utilizing Multiple Linear Regression Model under NB-IoT Technology)

  • 판이첸;김재수
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.139-142
    • /
    • 2020
  • NB-IoT(Narrow Band Internet of Things) is an emerging LPWAN(Low Power Wide Area Network) radio technology. NB-IoT has many advantages like low power, low cost, and high coverage. However low bandwidth and low sampling rates also lead to poor positioning accuracy. This paper proposed a solution to optimize positioning accuracy under the OTDOA(Observed Time Difference of Arrival) approach by utilizing MLR(Multiple Linear Regression) models. Through the MLR model to predict the influence degree of weather(temperature, humidity, light intensity and air pressure) on the arrival time of signal transmission to improve the measurement accuracy. The improvement of measurement accuracy can greatly improve IoT applications based on NB-IoT.

  • PDF

Interference of Sulphur Dioxide on Balloon-borne Electrochemical Concentration Cell Ozone Sensors over the Mexico City Metropolitan Area

  • Kanda, Isao;Basaldud, Roberto;Horikoshi, Nobuji;Okazaki, Yukiyo;Benitez-Garcia, Sandy-Edith;Ortinez, Abraham;Benitez, Victor Ramos;Cardenas, Beatriz;Wakamatsu, Shinji
    • Asian Journal of Atmospheric Environment
    • /
    • 제8권3호
    • /
    • pp.162-174
    • /
    • 2014
  • An abnormal decrease in ozonesonde sensor signal occurred during air-pollution study campaigns in November 2011 and March 2012 in Mexico City Metropolitan Area (MCMA). Sharp drops in sensor signal around 5 km above sea level and above were observed in November 2011, and a reduction of signal over a broad range of altitude was observed in the convective boundary layer in March 2012. Circumstantial evidence indicated that $SO_2$ gas interfered with the electrochemical concentration cell (ECC) ozone sensors in the ozonesonde and that this interference was the cause of the reduced sensor signal output. The sharp drops in November 2011 were attributed to the $SO_2$ plume from Popocat$\acute{e}$petl volcano southeast of MCMA. Experiments on the response of the ECC sensor to representative atmospheric trace gases showed that only $SO_2$ could cause the observed abrupt drops in sensor signal. The vertical profile of the plume reproduced by a Lagrangian particle diffusion simulation supported this finding. A near-ground reduction in the sensor signal in March 2012 was attributed to an $SO_2$ plume from the Tula industrial complex north-west of MCMA. Before and at the time of ozonesonde launch, intermittent high $SO_2$ concentrations were recorded at ground-level monitoring stations north of MCMA. The difference between the $O_3$ concentration measured by the ozonesonde and that recorded by a UV-based $O_3$ monitor was consistent with the $SO_2$ concentration recorded by a UV-based monitor on the ground. The vertical profiles of the plumes estimated by Lagrangian particle diffusion simulation agreed fairly well with the observed profile. Statistical analysis of the wind field in MCMA revealed that the effect Popocat$\acute{e}$petl was most likely to have occurred from June to October, whereas the effect of the industries north of MCMA, including the Tula complex, was predicted to occur throughout the year.

우천시 비보호좌회전에서의 간격수락 행태모형 개발 (Development of Gap Acceptance Models for Permitted Left Turn Intersections during Rainfall)

  • 황순천;이청원;이동민
    • 한국도로학회논문집
    • /
    • 제19권4호
    • /
    • pp.61-68
    • /
    • 2017
  • PURPOSES : A complete signal system is not always the best solution for improving traffic operation efficiency at intersections. An alternative solution is to use a Protected Permitted Left Turn (PPLT) operation method. However, the PPLT method needs to be developed after a detailed study of driving tendencies, most notably the gap acceptance behavior, for successful implementation. In this study, the gap acceptance behavior was investigated under various variables and weather conditions, especially under rain, and the results were compared to the case of normal weather. The results of this study will be helpful in introducing the PPLT method, and are important considering the tendency of attempting unprotected left turns that is extremely common in Korean drivers. METHODS : Data was obtained by analyzing traffic footage at four intersections on a day when the precipitation was greater than 5 mm/h. The collected data was classified into seven variables for statistical analysis. Finally, we used logistic regression analysis to develop a probability distribution model. RESULTS : Gap, traffic volume, and the number of conflicting lanes were factors affecting the gap acceptance behavior of unprotected left turns under rainy conditions. CONCLUSIONS : The probability of attempting unprotected left turns is higher for larger gaps. On the other hand, the probability of attempting unprotected left turns decreases with an increase in the traffic volume. Finally, an increase in the number of conflict lanes leads to a decrease in the probability of attempting unprotected left turns.