• Title/Summary/Keyword: weather effect

Search Result 900, Processing Time 0.031 seconds

Variation of the Period of Hot Weather Concrete with Elapse of Age in Korea (경년변화에 따른 우리나라 서중 콘크리트 적용기간의 변천)

  • Choi, Sung-Yong;Hong, Seak-Min;Lee, Chung-Sub;Jin, Cheng-Ri;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.53-56
    • /
    • 2008
  • This paper is to investigate the change of the period of hot weather concrete with elapse of age based on climate data. Climate data for 30 years and 5 years are used respectively. Determination of the period of hot weather concreting on architectural execution in Korea according to the specifications of AIJ, KSCE, and ACI are discussed. According to the research, the period of hot weather concreting with each specification in most regions lasts over 35 days. Compared with the period of cold weather concreting in hillside and inland area, coastal areas have shorter period in the same latitude. The period of hot weather concreting tends to decrease with high latitude. As expected, with the elapse of age, the period of hot weather concrete exhibited to decrease, especially, big city like Seoul, Busan etc had remarkably increased period by as much as a week. This is due to the global warming and industrialization effect with the elapse of age.

  • PDF

Analysis of the Efficiency of Improved Bubble Sheet for Heat Curing in Cold Weather

  • Choi, Hyun-Kyu;Son, Myung-Sik;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.1
    • /
    • pp.38-47
    • /
    • 2013
  • When building with concrete in cold weather, an insulation method of heat curing must be determined, and a holistic curing plan that considers the characteristics of structures, the heat loss coefficient of a curing sheet, the joint condition of the curing materials and the quantity of heat produced by a heating apparatus is an essential prerequisite for protection against early frost damage. But on a number of national construction sites, there have been serious problems in cold weather concreting due to the unreliability of the information obtained from practical experience. In the construction field in Japan, there is a specification for heat curing prepared by Japanese Architectural Society, which provides an equation for calculating heat quantity. It is also necessary to adopt a detailed specification for a standard heat curing method that is applicable to all national construction sites. In this study, the effect of bubble sheets on the economic feasibility of cold weather concrete is investigated through a comparison with the blue sheets commonly prescribed in national construction sites. In conclusion, this study found that bubble sheets had the effect of reducing the cost of curing materials and the fuel cost consumed by a heating apparatus, compared to the use of blue sheets.

Investigate the effect of spatial variables on the weather radar adjustment method for heavy rainfall events by ANFIS-PSO

  • Oliaye, Alireza;Kim, Seon-Ho;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.142-142
    • /
    • 2022
  • Adjusting weather radar data is a prerequisite for its use in various hydrological studies. Effect of spatial variables are considered to adjust weather radar data in many of these researches. The existence of diverse topography in South Korea has increased the importance of analyzing these variables. In this study, some spatial variable like slope, elevation, aspect, distance from the sea, plan and profile curvature was considered. To investigate different topographic conditions, tried to use three radar station of Gwanaksan, Gwangdeoksan and Gudeoksan which are located in northwest, north and southeast of South Korea, respectively. To form the suitable fuzzy model and create the best membership functions of variables, ANFIS-PSO model was applied. After optimizing the model, the correlation coefficient and sensitivity of adjusted Quantitative Precipitation Estimation (QPE) based on spatial variables was calculated to find how variables work in adjusted QPE process. The results showed that the variable of elevation causes the most change in rainfall and consequently in the adjustment of radar data in model. Accordingly, the sensitivity ratio calculated for variables shows that with increasing rainfall duration, the effects of these variables on rainfall adjustment increase. The approach of this study, due to the simplicity and accuracy of this method, can be used to adjust the weather radar data and other required models.

  • PDF

Adaptive Culling Mechanism for Weather Phenomena Effect in Flight Simulator (항공시뮬레이터에서 기상 효과를 위한 적응적 컬링기법)

  • Cha, YoungJun;Kim, JongBum;Kim, Ki-Il
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.2
    • /
    • pp.61-66
    • /
    • 2014
  • Temporal disappearance of weather phenomena effect is frequently observed in flight simulator when large volume of terrain data are processed. This problem was solved by employing culling scheme at static ratio in the existing scheme. However, since this approach causes the irregular rendering speed according to volume of data, it is necessary to develop a new culling scheme to maintain steady rendering speed by adjusting the culling ratio dynamically. In this paper, we propose a new culling scheme to make use of distance of the visibility to determine culling ratio depending on volume of terrain data. The experimental results show that rendering speed is preserved by the proposed scheme without affecting the visuality at rendering the scene and weather phenomena effect together.

Statistical Modeling on Weather Parameters to Develop Forest Fire Forecasting System

  • Trivedi, Manish;Kumar, Manoj;Shukla, Ripunjai
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.1
    • /
    • pp.221-235
    • /
    • 2009
  • This manuscript illustrates the comparative study between ARIMA and Exponential Smoothing modeling to develop forest fire forecasting system using different weather parameters. In this paper, authors have developed the most suitable and closest forecasting models like ARIMA and Exponential Smoothing techniques using different weather parameters. Authors have considered the extremes of the Wind speed, Radiation, Maximum Temperature and Deviation Temperature of the Summer Season form March to June month for the Ranchi Region in Jharkhand. The data is taken by own resource with the help of Automatic Weather Station. This paper consists a deep study of the effect of extreme values of the different parameters on the weather fluctuations which creates forest fires in the region. In this paper, the numerical illustration has been incorporated to support the present study. Comparative study of different suitable models also incorporated and best fitted model has been tested for these parameters.

A Study on Concrete Material Quality Management Based on Various Test of Construction Condition under Hot Weather Circumstance (서중(暑中) 환경에서 현장 콘크리트 시험을 통한 재료 품질관리 방안)

  • Park, Shin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.3 s.17
    • /
    • pp.91-99
    • /
    • 2005
  • It is required to study systematical on the concrete quality management to extend structure life because rebuilding effect is reducing under present condition of large sized and high stories structure. Concrete, which shows its intensity by hydrating action and a big change in quality according to hot weather and temperature, produces a lot of qualify problem under hot and cold weather Because of each specification and construction plan which does not have basic standard on site, concrete's quality is irregular and makes some defect. As a result, Daegu is turned out to be the longest area after investigating application period and days focused on 8 cities weather information about relationship between hot weather circumstance and construction environment. Therefore, we first surveyed the concrete material in the region and found out the problem of quality nanagement. Then figure out the way of solution. Moreover, we integrated concrete material quality management, which is applied differently to each site, to have equal quality and to reduce defect from construction site. And then, based on various test of construction condition and analysis of quality management item, we suggest effective concrete quality management to make concrete material construction standard guide and plan under hot weather.

The Impact of Severe Weather Announcement on the Korea Meteorological Administration Call Center Counseling Demand (기상 특보 발표가 기상청 콜센터 상담 건수에 미치는 영향 분석)

  • Ji, Youngmi;Park, Taeyoung;Lee, Yung-Seop
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.377-384
    • /
    • 2017
  • The effective management of call centers under special circumstances is critical to improve customer satisfaction. In order to effectively respond to call center counseling demand, this paper aims to identify factors having the greatest impact on the number of Korea Meteorological Administration (KMA) call center counseling. To do so, we propose to combine call center data with severe weather announcement data and investigate how the severe weather announcement affects the number of KMA call center counseling. A time lag analysis is conducted and it is found that the severe weather announcement takes about an hour to be reflected in the number of KMA call center counseling. Based on the result of the time lag analysis, we conduct a comparative analysis according to time and season using the data collected from 1 January 2012, to 29 June 2016. The results show that the number of KMA call center counseling increases at lunchtime and decreases during nighttime, and the average rate of change in call center counseling demand tends to be larger under the severe weather announcement. For the comparative analysis according to the season, there are significant differences in the effect of severe weather announcement on the number of KMA call center counseling in spring, fall and winter.

A Study on Curing Methods for Concrete Pavement on Early Strength Development in Cool Weather Condition (저온 환경에서 콘크리트 포장의 강도발현 촉진을 위한 양생방법 연구)

  • Ryu, SungWoo;Kim, JinHwan;Hong, SeungHo;Park, JeJin
    • International Journal of Highway Engineering
    • /
    • v.19 no.3
    • /
    • pp.11-18
    • /
    • 2017
  • PURPOSES : This study investigates the effect on concrete pavement accordance with the curing methods in cool weather and supports the best method in the field. METHODS : Two field tests evaluated the curing methods of concrete pavement in cool weather. Firstly, five curing methods were tested, including normal curing compound, black curing compound, bubble sheet, curing mat, and curing mat covered with vinyl. Concrete maturity was compared from temperature data. Secondly, normal curing compound and curing mat with vinyl, which showed the best performance, were compared in terms of maturity and join condition index. RESULTS:From the field tests, it is an evident that curing mat with vinyl accelerated the concrete strength. Therefore, it is possible to conduct saw-cut works in cool weather, which minimizes damage on concrete at joint. CONCLUSIONS : For concrete pavement in cool weather, using curing mat with vinyl as the curing method could overcome the strength delay. Therefore, strength and durability problems on concrete at joint due to cool weather would be fewer in the future.

An Improved Photovoltaic System Output Prediction Model under Limited Weather Information

  • Park, Sung-Won;Son, Sung-Yong;Kim, Changseob;LEE, Kwang Y.;Hwang, Hye-Mi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1874-1885
    • /
    • 2018
  • The customer side operation is getting more complex in a smart grid environment because of the adoption of renewable resources. In performing energy management planning or scheduling, it is essential to forecast non-controllable resources accurately and robustly. The PV system is one of the common renewable energy resources in customer side. Its output depends on weather and physical characteristics of the PV system. Thus, weather information is essential to predict the amount of PV system output. However, weather forecast usually does not include enough solar irradiation information. In this study, a PV system power output prediction model (PPM) under limited weather information is proposed. In the proposed model, meteorological radiation model (MRM) is used to improve cloud cover radiation model (CRM) to consider the seasonal effect of the target region. The results of the proposed model are compared to the result of the conventional CRM prediction method on the PV generation obtained from a field test site. With the PPM, root mean square error (RMSE), and mean absolute error (MAE) are improved by 23.43% and 33.76%, respectively, compared to CRM for all days; while in clear days, they are improved by 53.36% and 62.90%, respectively.

A Study on Weather Information Utilization for The Development of Untact Construction Management (비대면 건설사업관리 웹 개발을 위한 날씨 정보 활용 연구)

  • Kim, Minjin;Kang, Sangchan;Jang, Myunghoun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.4
    • /
    • pp.78-83
    • /
    • 2022
  • Many domestic construction companies are continuously trying to utilize weather information for construction management. The effect of the weather is greatly reflected in the construction industry because there are many outdoor work. Therefore, weather information is clearly needed to predict the exact construction period. And the calculation of the number of non-working days considering the weather information is very important. However, many construction companies have difficulty calculating the exact construction period because it is difficult to predict the exact long-term weather. In this study, it is analyzed the past long-term weather information. Then the weather information by region and season is applied to the construction management system. Finally, it is confirmed the workable date, the field information and the weather information.