• Title/Summary/Keyword: weather conditions

Search Result 1,756, Processing Time 0.025 seconds

Microclimate and Rice Production (수도작의 미기상과 생산성)

  • Uchijima, Zenbei
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.314-339
    • /
    • 1982
  • Fluctuating climate is still most important environmental constrain, although improved modem agricultural technology has succeeded to increase crop production in the world. To stabilize the food production under fluctuating weather conditions, it is very needed to obain the quantitative information of interactions between crops and climate. The main purpose of this paper is three hold. Using the JIBP-data, the dry matter accumulation of rice crops is studied in relation to weather indexes (\SigmaTa and \SigmaSt). Temperature dependence of the yield index of rice is analyzed as to air temperature and water temperature. \SigmaT$_{10}$ -fluctuations are studied using meteorological data at various stations. The possible shift of \SigmaT$_{10}$ -isopleths due to climate fluctuation is evaluated. The second interest is in the plant climate of rice crops. Using results of canopy photosynthesis, it is pointed that the canopy structure has most important implication in plant climate. Leaf-air, stomatal, and mesophyll resistances of rice crops are described in relation to weather conditions. The change in light condition and aerodynamical property of rice crops with the growth is illustrated. The energy partition is also studied at different growing stages. Third point is to show in more detail effective countermeasures against cold irrigation water and cool summer. Heat balance of warming pond and polyethylene tube as a heat exchanger is studied to make nomo-grams for evaluating the necessary area and necessary length. Effects of windbreak net on rice crops are illustrated by using experimental and simulation results.lts.

  • PDF

Analytical study of house wall and air temperature transients under on-off and proportional control for different wall type

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.1
    • /
    • pp.70-81
    • /
    • 2010
  • A mathematical model is formulated to study the effect of wall mass on the thermal performance of four different houses of different construction. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one -dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures is obtained using the Laplace transform method. Typical Meteorological Year data are processed to yield hourly average monthly values. These discrete data are then converted to a continuous, time dependent form using a Fast Fourier Transform method. This study is conducted using weather data from four different locations in the United States: Albuquerque, New mexico; Miami, Florida; Santa Maria, California; and Washington D.C. for both winter and summer conditions. A computer code is developed to calculate the wall temperature profile, room air temperature, and energy consumption loads. Three sets of results are calculated one for no auxiliary energy and two for different control mechanism -- an on-off controller and a proportional controller. Comparisons are made for the cases of two controllers. Heavy weight houses with insulation in mild weather areas (such as August in Santa Maria, California) show a high comfort level. Houses using proportional control experience a higher comfort level in comparison to houses using on-off control. The result shows that there is an effect of mass on the thermal performance of a heavily constructed house in mild weather conditions.

A Study on Daily Water Demand Prediction Model (급수량(給水量) 단기(短期) 수요예측(需要豫測)에 대한 연구(硏究))

  • Koo, Jayoug;Koizwui, Akirau;Inakazu, Toyono
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.109-118
    • /
    • 1997
  • In this study, we examined the structural analysis of water demand fluctuation for water distribution control of water supply network. In order to analyze for the length of stationary time series, we calculate autocorrelation coefficient of each case equally divided data size. As a result, it was found that, with the data size of around three months, any case could be used as stationary time series. we analyze cross-correlation coefficient between the daily water consumption's data and primary influence factors. As a result, we have decided to use weather conditions and maximum temperature as natural primary factors and holidays as a social factor. Applying the multiple ARIMA model, we obtains an effective model to describe the daily water demand prediction. From the forecasting result, even though we forecast water distribution quantity of the following year, estimated values well express the flctuations of measurements. Thus, the suitability of the model for practical use can be confirmed. When this model is used for practical water distribution control, water distribution quantity for the following day should be found by inputting maximum temperature and weather conditions obtained from weather forecast, and water purification plants and service reservoirs should be operated based on this information while operation of pumps and valves should be set up. Consequently, we will be able to devise a rational water management system.

  • PDF

The Influences of 5ea Breeze on Surface Ozone Concentration in Pusan Coastal Area, Korea (부산 연안역의 오존 농도에 미치는 해풍의 영향)

  • 김유근;이화운
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.265-275
    • /
    • 1996
  • Air pollution characteristics and the influence of sea breeze on surface ozone concentration were studied using the data measured at 7 air quality continuous monitoring stations from June to September using 3 years (1990, 1993, 1994) in Pusan coastal area. Among the 246 sea breeze days for research Period, there were approximately 89 sea breeze days (36%) from lune to September, And there were 120 the episode days (68%) of ozone greater than or equal to 60 ppb in summer season. In 89 sea breeze days, the episode day was highly marked as 56 days (63%). So, we knew that the sea breeze greatly affects the occurence of ozone episode day. the ozone concentration under the condition of the sea breeze increase about 40% in the daytime. Frequencies distribution of $O_3$ concentration for sea breeze moved toward high concentration class. The characteristics of ozone concentration in relation to meteorological conditions of sea breeze is significant because we can discover major weather factors for eastablishing an air pollution- weather forecast system. For further. study about meterological approach method for photochemical air pollution, it is necessary to explain the characteristics of atmosphere below 1, 000 m, especially concerning the formation mechanism of inversion layers. And finally, we will study the relationships to synoptic weather conditions and vertical structure and diurnal variation of local wind systems including sea breeze, and the vertical movements of atmosphere in the city.

  • PDF

Effects of Snowfall Intensity on Freeway Travel Speed (Focused on Seohaean Freeway) (강설에 따른 고속도로 주행속도 변화연구 - 서해안고속도로를 중심으로 -)

  • Hong, Sung-Min;Oh, Cheol;Yang, Chung-Hoen;Jeon, Woo-Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.93-101
    • /
    • 2012
  • PURPOSES : Adverse weather conditions such as heavy rain, heavy snowfall, and thick fog and so on have highly affect on the change in traffic conditions on the road. In particular, heavy snowfall causes capacity reduction as well as crash occurrence. This study investigated the effects of snowfall on speed on a freeway. METHODS : Vehicle detection systems data were matched with corresponding weather station data by regression analysis. RESULTS : The results show that the travel speed is reduced by 6.7% under little snowfall and by 12.8% under heavy snowfall. Regarding the speed variation, 8.7% and 114.7% increases are observed under little snowfall and heavy snowfall, respectively. It is also found that 1 cm increase in snowfall leads to 0.4% decrease in travel speed. In addition, the travel speed increases by 0.4% when the temperature increases by $1^{\circ}C$. CONCLUSIONS : It is expected that the outcome of this study will be useful in establishing more effective strategies for winter operations and road maintenance in practice.

The study of simplified technique compared with analytical solution method for calculating the energy consumption loads of four houses having various wall construction

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.1
    • /
    • pp.46-58
    • /
    • 2011
  • A steady-state analysis and a simple dynamic model as simplified methods are developed, and results of energy consumption loads are compared with results obtained using computer to evaluate the analytical solution. Before obtaining simplified model a mathematical model is formulated for the effect of wall mass on the thermal performance of four different houses having various wall construction. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one-dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures is obtained using the Laplace transform method. Typical Meteorological Year data are processed to yield hourly average monthly values. This study is conducted using weather data from four different locations in the United States: Albuquerque, New mexico; Miami, Florida; Santa Maria, California; and Washington D.C. for both winter and summer conditions. The steady state analysis that does not include the effect of thermal mass can provide an accurate estimate of energy consumption in most cases except for houses #2 and #4 in mild weather areas. This result shows that there is an effect of mass on the thermal performance of heavily constructed house in mild weather conditions. The simple dynamic model is applicable for high cycling rates and accurate values of inside wall temperature and ambient air temperature.

The study of the calculation of energy consumption load for heating and cooling in building using the Laplace Transform solution

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.3
    • /
    • pp.292-300
    • /
    • 2014
  • The Laplace Transform solution is used as a mathematical model to analyse the thermal performance of the building constructed using different wall materials. The solution obtained from Laplace Transform is an analytical solution of an one dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures. The main purpose of the study is showing the detail of obtaining solution process of the Laplace Transform. This study is conducted using weather data from two different locations in Korea: Seoul, Busan for both winter and summer conditions. A comparison is made for the cases of an on-off controller and a proportional controller. The weather data are processed to yield hourly average monthly values. Energy consumption load is well calculated from the solution. The result shows that there is an effect of mass on the thermal performance of heavily constructed house in mild weather conditions such as Busan. Building using proportional control experience a higher comfort level in a comparison of building using on-off control.

Temperature and humidity effects on behavior of grouts

  • Farzampour, Alireza
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.659-669
    • /
    • 2017
  • Grouts compared to other material sources, could be highly sensitive to cold weather conditions, especially when the compressive strength is the matter of concern. Grout as one the substantial residential building material used in retaining walls, rebar fixation, sidewalks is in need of deeper investigation, especially in extreme weather condition. In this article, compressive strength development of four different commercial grouts at three temperatures and two humidity rates are evaluated. This experiment is aimed to assess the grout strength development over time and overall compressive strength when the material is cast at low temperatures. Results represent that reducing the curing temperature about 15 degrees could result in 20% reduction in ultimate strength; however, decreasing the humidity percentage by 50% could lead to 10% reduction in ultimate strength. The maturity test results represented the effect of various temperatures and humidity rates on maturity of the grouts. Additionally, the freeze-thaw cycle's effect on the grouts is conducted to investigate the durability factor. The results show that the lower temperatures could be significantly influential on the behavior of grouts compared to lower humidity rates. It is indicated that the maturity test could not be valid and precise in harsh temperature conditions.

Design of Free-space Optical Communication Terminal Considering for Korean Domestic Weather Conditions (국내 기상 조건을 고려한 자유공간 광통신 단말기 설계)

  • Hajun Song;Heesuk Jang;Taehyun Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.238-246
    • /
    • 2024
  • Modern military operations rely heavily on broadband communication and data transmission. Recently, the rising use of intelligent unmanned technology necessitates more frequencies. Free-space optical(FSO) communication can offer high-data-rate communications with high security and no need for licensing. Therefore, the FSO communication holds significant interest and potential in the defense industry. In this paper, we present design of a FSO communication terminal taking Korean domestic weather conditions into account. The domestic atmospheric attenuation is analyzed using several models and two-year meteorological information for a city in Korea, and this analysis is utilized to design the FSO communication terminal. The design results were verified using an FSO communication test bed, and we achieved an Ethernet bandwidth of approximately 1.86 Gbps at a distance of 1.3 km with the optical amplifier output power of the test bed set to about 20 dBm.

A Study on the Prevention of Train Accidents Caused by Heavy Rains (폭우로 인한 열차사고 예방에 관한 연구)

  • Kim, Ki-Young;Seo, Gyu-Suk;Choi, Byung-Gie;Kang, Kyung-Sik
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2009.04a
    • /
    • pp.35-43
    • /
    • 2009
  • The specific feature of trains as a means of transportation is that, on one side, at once they can carry big loads but, at the same time, if an accident occurs, it potentially leads to many human casualties or big material losses. Especially, train accidents caused by bad weather conditions result in many fatal losses of human lives and property. In Korea many railways run either in mountainous areas or along rivers thus making them especially susceptible to natural hazards. The types of damages inflicted by heavy rains resulting from rapidly changing meteorological conditions are diverse; and not only their scope is big but also they repeat regularly. Consequently, this study analyses the reasons why such effects of heavy rains on the railway conditions, damage to the railways caused by heavy rains or cases of stone fall as well as other types of accidents are not avoided. Study also, on the basis of laws related to movement in poor weather conditions and specifics of train braking, identifies systematic and technical problems and suggests and emphasizes new complex measures on their prevention.

  • PDF