• 제목/요약/키워드: weather Predict

검색결과 389건 처리시간 0.025초

Multivariate Congestion Prediction using Stacked LSTM Autoencoder based Bidirectional LSTM Model

  • Vijayalakshmi, B;Thanga, Ramya S;Ramar, K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권1호
    • /
    • pp.216-238
    • /
    • 2023
  • In intelligent transportation systems, traffic management is an important task. The accurate forecasting of traffic characteristics like flow, congestion, and density is still active research because of the non-linear nature and uncertainty of the spatiotemporal data. Inclement weather, such as rain and snow, and other special events such as holidays, accidents, and road closures have a significant impact on driving and the average speed of vehicles on the road, which lowers traffic capacity and causes congestion in a widespread manner. This work designs a model for multivariate short-term traffic congestion prediction using SLSTM_AE-BiLSTM. The proposed design consists of a Bidirectional Long Short Term Memory(BiLSTM) network to predict traffic flow value and a Convolutional Neural network (CNN) model for detecting the congestion status. This model uses spatial static temporal dynamic data. The stacked Long Short Term Memory Autoencoder (SLSTM AE) is used to encode the weather features into a reduced and more informative feature space. BiLSTM model is used to capture the features from the past and present traffic data simultaneously and also to identify the long-term dependencies. It uses the traffic data and encoded weather data to perform the traffic flow prediction. The CNN model is used to predict the recurring congestion status based on the predicted traffic flow value at a particular urban traffic network. In this work, a publicly available Caltrans PEMS dataset with traffic parameters is used. The proposed model generates the congestion prediction with an accuracy rate of 92.74% which is slightly better when compared with other deep learning models for congestion prediction.

Quantitative Flood Forecasting Using Remotely-Sensed Data and Neural Networks

  • Kim, Gwangseob
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2002년도 학술발표회 논문집(I)
    • /
    • pp.43-50
    • /
    • 2002
  • Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict streamflow and flash floods. Previously, neural networks were used to develop a Quantitative Precipitation Forecasting (QPF) model that highly improved forecasting skill at specific locations in Pennsylvania, using both Numerical Weather Prediction (NWP) output and rainfall and radiosonde data. The objective of this study was to improve an existing artificial neural network model and incorporate the evolving structure and frequency of intense weather systems in the mid-Atlantic region of the United States for improved flood forecasting. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as life time, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. The new Quantitative Flood Forecasting (QFF) model was applied to predict streamflow peaks with lead-times of 18 and 24 hours over a five year period in 4 watersheds on the leeward side of the Appalachian mountains in the mid-Atlantic region. Threat scores consistently above .6 and close to 0.8 ∼ 0.9 were obtained fur 18 hour lead-time forecasts, and skill scores of at least 4% and up to 6% were attained for the 24 hour lead-time forecasts. This work demonstrates that multisensor data cast into an expert information system such as neural networks, if built upon scientific understanding of regional hydrometeorology, can lead to significant gains in the forecast skill of extreme rainfall and associated floods. In particular, this study validates our hypothesis that accurate and extended flood forecast lead-times can be attained by taking into consideration the synoptic evolution of atmospheric conditions extracted from the analysis of large-area remotely sensed imagery While physically-based numerical weather prediction and river routing models cannot accurately depict complex natural non-linear processes, and thus have difficulty in simulating extreme events such as heavy rainfall and floods, data-driven approaches should be viewed as a strong alternative in operational hydrology. This is especially more pertinent at a time when the diversity of sensors in satellites and ground-based operational weather monitoring systems provide large volumes of data on a real-time basis.

  • PDF

기상예보시스템을 이용한 가공송전선의 단기간 동적송전용량 예측 (Short-Term Dynamic Line Rating Prediction in Overhead Transmission Lines Using Weather Forecast System)

  • 김성덕;이승수;장태인;장지원;이동일
    • 조명전기설비학회논문지
    • /
    • 제18권6호
    • /
    • pp.158-169
    • /
    • 2004
  • 본 논문에서는 실시간 기상예보데이터를 사용하여 가공송전선의 단시간 송전용량을 예측하기 위한 방법을 제안한다. 기상청에서 제공되는 예보기온, 풍속등급 및 날씨코드와 같은 3시간 예보요소들을 분석하여 기상예보데이터와 실제 측정데이터 사이의 상관성이 분석되었다. 동적송전용량을 결정하는데 사용하기 위하여 이러한 요소들은 적당한 수치로 변환되었다. 또한 풍속과 일사량에 대한 신뢰도를 개선하기 위하여 적응뉴로퍼지시스템이 설계되었다. 기상예보데이터가 송전용량을 신뢰성을 갖도록 추정하는데 사용될 수 있음을 밝혔다. 그 결과 제안된 예측시스템이 단시간 용량예측에 효율적으로 실용화될 수 있을 것이다.

UM 자료를 이용한 노면온도예측모델(UM-Road)의 개발 (Development of Road Surface Temperature Prediction Model using the Unified Model output (UM-Road))

  • 박문수;주승진;손영태
    • 대기
    • /
    • 제24권4호
    • /
    • pp.471-479
    • /
    • 2014
  • A road surface temperature prediction model (UM-Road) using input data of the Unified Model (UM) output and road physical properties is developed and verified with the use of the observed data at road weather information system. The UM outputs of air temperature, relative humidity, wind speed, downward shortwave radiation, net longwave radiation, precipitation and the road properties such as slope angles, albedo, thermal conductivity, heat capacity at maximum 7 depth are used. The net radiation is computed by a surface radiation energy balance, the ground heat flux at surface is estimated by a surface energy balance based on the Monin-Obukhov similarity, the ground heat transfer process is applied to predict the road surface temperature. If the observed road surface temperature exists, the simulated road surface temperature is corrected by mean bias during the last 24 hours. The developed UM-Road is verified using the observed data at road side for the period from 21 to 31 March 2013. It is found that the UM-Road simulates the diurnal trend and peak values of road surface temperature very well and the 50% (90%) of temperature difference lies within ${\pm}1.5^{\circ}C$ (${\pm}2.5^{\circ}C$) except for precipitation case.

기상예보를 고려한 관개용 저수지의 최적 조작 모형(I) -일강수량.일증발량 자료발생- (Optimal Reservoir Operation Models for Paddy Rice Irrigation with Weather Forecasts (I) - Generating Daily Rainfall and Evaporation Data-)

  • 김병진;박승우
    • 한국농공학회지
    • /
    • 제36권1호
    • /
    • pp.63-72
    • /
    • 1994
  • The objective of the study is to develop weather generators for daily rainfall and small pan evaporation and to test the applicability with recorded data. Daily rainfall forecasting model(DRFM) was developed that uses a first order Markov chain to describe rainfall seque- nces and applies an incomplete Gamma function to predict the amount of precipitation. Daily evaporation forecasting model(DEFM) that adopts a normal distribution function to generate the evaporation for dry and wet days was also formulated. DRFM and DEFM were tested with twenty year weather data from eleven stations using Chi-square and Kolmogorov and Smirnov goodness of fit tests. The test results showed that the generated sequences of rainfall occurrence, amount of rainfall, and pan evaporation were statistically fit to recorded data from eleven, seven, and seven stations at the 5% level of significance. Generated rainfall data from DRFM were very close in frequency distri- bution patterns to records for stations all over the country. Pan evaporation for rainy days generated were less accurate than that for dry days. And the proposed models may be used as tools to provide many mathematical models with long-term daily rainfall and small pan evaporation data. An example is an irrigation scheduling model, which will be further detailed in the paper.

  • PDF

부하계산 프로그램에서 적용되는 인천지역의 시간당 일사량에 관한 연구 (The study of the solar radiation emitted per hour in Incheon applied in load calculation programs)

  • 유호천;이선동
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.108-117
    • /
    • 2010
  • Although many researches of simulation programs to predict climate under the current climate change have been performed but more detailed studies of weather date which might influence the load of buildings seem insufficient. In this study, in Incheon are analyzed IES (Integrated Environmental Solutions)6.0, Ecotect 2010, EnergyPlus v4.0's IWEC file and ISO-TRY, the Korean standard weather data provided by the Korean Solar Energy Society for direct normal radiation which is used in load calculation programs. The results show that the radiation of the programs is the same as that of direct normal radiation per month but has a mere difference, compared with the radiation per hour and IWEC has also 77.12% when compared with ISO-TRY, meaning that it could affect load values of buildings when applied to them. And in case of ISO-TRY, it could be judged that the application of test reference year applied by the data measured has higher reliability than IWEC file.

레이더 관측자료를 이용한 호남지방의 국지강수변화에 관한 수치모의

  • 박근영;이순환;류찬수
    • 한국지구과학회:학술대회논문집
    • /
    • 한국지구과학회 2005년도 춘계학술발표회 논문집
    • /
    • pp.182-187
    • /
    • 2005
  • 호남지방의 집중호우 예측 가능성을 향상시키기 위하여 레이더 자료동화를 이용한 예측가능성 제고, 광주지방의 고층자료를 분석하여 집중호우 발생시의 종관장을 해석하였다. 자료동화 자료로는 진도 S-band 레이더 원시자료를 이용한 고도별 수평 바람장을 산출하여 사용하였다. 또한, PC-cluster를 platform으로 사용하는 호남지방의 고해상도 기상예측시스템을 이용하여, 레이더 수평 바람장 자료의 동화가 집중호우 및 중규모 순환장 예측정확도에 미치는 영향을 살펴보았다.

  • PDF

태양광발전요소 데이터를 활용한 발전효율 퍼지 예측 모델 설계 (Design of Generation Efficiency Fuzzy Prediction Model using Solar Power Element Data)

  • 차왕철;박정호;조욱래;김재철
    • 전기학회논문지
    • /
    • 제63권10호
    • /
    • pp.1423-1427
    • /
    • 2014
  • Quantity of the solar power generation is heavily influenced by weather. In other words, due to difference in insolation, different quantity may be generated. However, it does not mean all areas with identical insolation produces same quantity because of various environmental aspects. Additionally, geographic factors such as altitude, height of plant may have an impact on the quantity. Hence, through this research, we designed a system to predict efficiency of the solar power generation system by applying insolation, weather factor such as duration of sunshine, cloudiness parameter and location. By applying insolation, weather data that are collected from various places, we established a system that fits with our nation. Apart from, we produced a geographic model equation through utilizing generated data installed nationwide. To design a prediction model that integrates two factors, we apply fuzzy algorithm, and validate the performance of system by establishing simulation system.

수문기상가뭄지수 (HCDI) 개발 및 가뭄 예측 효율성 평가 (Development of Hydroclimate Drought Index (HCDI) and Evaluation of Drought Prediction in South Korea)

  • 류재현;김정진;이경도
    • 한국농공학회논문집
    • /
    • 제61권1호
    • /
    • pp.31-44
    • /
    • 2019
  • The main objective of this research is to develop a hydroclimate drought index (HCDI) using the gridded climate data inputs in a Variable Infiltration Capacity (VIC) modeling platform. Typical drought indices, including, Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), and Self-calibrated Palmer Drought Severity Index (SC-PDSI) in South Korea are also used and compared. Inverse Distance Weighting (IDW) method is applied to create the gridded climate data from 56 ground weather stations using topographic information between weather stations and the respective grid cell ($12km{\times}12km$). R statistical software packages are used to visualize HCDI in Google Earth. Skill score (SS) are computed to evaluate the drought predictability based on water information derived from the observed reservoir storage and the ground weather stations. The study indicates that the proposed HCDI with the gridded climate data input is promising in the sense that it can help us to predict potential drought extents and to mitigate its impacts in a changing climate. The longer term drought prediction (e.g., 9 and 12 month) capability, in particular, shows higher SS so that it can be used for climate-driven future droughts.

Developing a Solution to Improve Road Safety Using Multiple Deep Learning Techniques

  • Humberto, Villalta;Min gi, Lee;Yoon Hee, Jo;Kwang Sik, Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권1호
    • /
    • pp.85-96
    • /
    • 2023
  • The number of traffic accidents caused by wet or icy road surface conditions is on the rise every year. Car crashes in such bad road conditions can increase fatalities and serious injuries. Historical data (from the year 2016 to the year 2020) on weather-related traffic accidents show that the fatality rates are fairly high in Korea. This requires accurate prediction and identification of hazardous road conditions. In this study, a forecasting model is developed to predict the chances of traffic accidents that can occur on roads affected by weather and road surface conditions. Multiple deep learning algorithms taking into account AlexNet and 2D-CNN are employed. Data on orthophoto images, automatic weather systems, automated synoptic observing systems, and road surfaces are used for training and testing purposes. The orthophotos images are pre-processed before using them as input data for the modeling process. The procedure involves image segmentation techniques as well as the Z-Curve index. Results indicate that there is an acceptable performance of prediction such as 65% for dry, 46% for moist, and 33% for wet road conditions. The overall accuracy of the model is 53%. The findings of the study may contribute to developing comprehensive measures for enhancing road safety.