• Title/Summary/Keyword: wearing experiment

Search Result 223, Processing Time 0.019 seconds

Evaluation of the Usefulness of Virtual Reality Equipment for Relieving Patients' Anxiety during Whole-Body Bone Scan (전신 뼈 검사 환자의 불안감 해소를 위한 가상현실 장비의 유용성 평가)

  • Kim, Hae-Rin;Kim, Jung-Yul;Lee, Seung-Jae;Baek, Song-Ee;Kim, Jin-Gu;Kim, Ga-Yoon;Nam-Koong, Hyuk;Kang, Chun-Goo;Kim, Jae-Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.26 no.1
    • /
    • pp.27-32
    • /
    • 2022
  • Purpose When performing a whole-body bone scan, many patients are experiencing psychological difficulties due to the close distance to the detector. Recently, in the medical field, there is a report that using virtual reality (VR) equipment can give pain relief to pediatric patients with weak concentration or patients receiving severe treatment through a distraction method. Therefore, in this paper, VR equipment was used to provide psychological stability to patients during nuclear medicine tests, and it is intended to evaluate whether it can be used in clinical practice. Materials and Methods As VR equipment, ALLIP Z6 VR (ALLIP, Korea) was used and the experiment was conducted after connecting to a mobile phone. The subjects were 30 patients who underwent whole-body bone examination from September 1, 2021 to September 30, 2021. After intravenous injection of 99mTc-HDP, 3 to 6 hours later, VR equipment was put on and whole body images were obtained. After the test, a survey was conducted, and a Likert scale of 5 points was used for psychological anxiety and satisfaction with VR equipment. Hypothesis verification and reliability of the survey were analyzed using SPSS Statistics 25 (IBM, Corp., Armonk, NY, USA). Results Anxiety about the existing whole-body bone test was 3.03±1.53, whereas that of anxiety after wearing VR equipment was 2.0±1.21, indicating that anxiety decreased to 34%. When regression analysis of the effect of the patient's concentration on VR equipment on anxiety about the test, the B value was 0.750 (P<0.01) and the t value was 6.181 (P<0.01). decreased and showed an influence of 75%. In addition, overall satisfaction with VR equipment was 3.76±1.28, and the intention to reuse was 66%. The Cronbach α value of the reliability coefficient of the questionnaire was 0.901. Conclusion When using VR equipment, patients' attention was dispersed, anxiety was reduced, and psychological stability was found. In the future, as VR equipment technology develops, it is thought that if the equipment can be miniaturized and the resolution of VR content images is increased, it can be used in various clinical settings if it provides more realistic stability to the patient.

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.

A Consideration of Apron's Shielding in Nuclear Medicine Working Environment (PET검사 작업환경에 있어서 APRON의 방어에 대한 고찰)

  • Lee, Seong-wook;Kim, Seung-hyun;Ji, Bong-geun;Lee, Dong-wook;Kim, Jeong-soo;Kim, Gyeong-mok;Jang, Young-do;Bang, Chan-seok;Baek, Jong-hoon;Lee, In-soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.110-114
    • /
    • 2014
  • Purpose: The advancement in PET/CT test devices has decreased the test time and popularized the test, and PET/CT tests have continuously increased. However, this increases the exposure dose of radiation workers, too. This study aims to measure the radiation shielding rate of $^{18}F-FDG$ with a strong energy and the shielding effect when worker wore an apron during the PET/CT test. Also, this study compared the shielding rate with $^{99m}TC$ to minimize the exposure dose of radiation workers. Materials and Methods: This study targeted 10 patients who visited in this hospital for the PET/CT test for 8 days from May 2nd to 10th 2013, and the $^{18}F-FDG$ distribution room, patient relaxing room (stand by room after $^{18}F-FDG$ injection) and PET/CT test room were chosen as measuring spots. Then, the changes in the dose rate were measured before and after the application of the APRON. For an accurate measurement, the distance from patients or sources was fixed at 1M. Also, the same method applied to $^{99m}TC's$ Source in order to compare the reduction in the dose by the Apron. Results: 1) When there was only L-block in the $^{18}F-FDG$ distribution room, the average dose rate was $0.32{\mu}Sv$, and in the case of L-blockK+ apron, it was $0.23{\mu}Sv$. The differences in the dose and dose rate between the two cases were respectively, $0.09{\mu}Sv$ and 26%. 2) When there was no apron in the relaxing room, the average dose rate was $33.1{\mu}Sv$, and when there was an apron, it was $22.3{\mu}Sv$. The differences in the dose and dose rate between them were respectively, $10.8{\mu}Sv$ and 33%. 3) When there was no APRON in the PET/CT room, the average dose rate was $6.9{\mu}Sv$, and there was an APRON, it was $5.5{\mu}Sv$. The differences in the dose and dose rate between them were respectively, $1.4{\mu}Sv$ and 25%. 4) When there was no apron, the average dose rate of $^{99m}TC$ was $23.7{\mu}Sv$, and when there was an apron, it was $5.5{\mu}Sv$. The differences in the dose and dose rate between them were respectively, $18.2{\mu}Sv$ and 77%. Conclusion: According to the result of the experiment, $^{99m}TC$ injected into patients showed an average shielding rate of 77%, and $^{18F}FDG$ showed a relatively low shielding rate of 27%. When comparing the sources only, $^{18F}FDG$ showed a shielding rate of 17%, and $^{99m}TC$'s was 77%. Though it had a lower shielding effect than $^{99m}TC$, $^{18}F-FDG$ also had a shielding effect on the apron. Therefore, it is considered that wearing an apron appropriate for high energy like $^{18}F-FDG$ would minimize the exposure dose of radiation workers.

  • PDF