• Title/Summary/Keyword: wearable robotics

Search Result 85, Processing Time 0.026 seconds

Energy-Efficient Approximate Speech Signal Processing for Wearable Devices

  • Park, Taejoon;Shin, Kyoosik;Kim, Nam Sung
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.145-150
    • /
    • 2017
  • As wearable devices are powered by batteries, they need to consume as little energy as possible. To address this challenge, in this article, we propose a synergistic technique for energy-efficient approximate speech signal processing (ASSP) for wearable devices. More specifically, to enable the efficient trade-off between energy consumption and sound quality, we synergistically integrate an approximate multiplier and a successive approximate register analog-to-digital converter using our enhanced conversion algorithm. The proposed ASSP technique provides ~40% lower energy consumption with ~5% higher sound quality than a traditional one that optimizes only the bit width of SSP.

Improvement of Gesture Recognition using 2-stage HMM (2단계 히든마코프 모델을 이용한 제스쳐의 성능향상 연구)

  • Jung, Hwon-Jae;Park, Hyeonjun;Kim, Donghan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1034-1037
    • /
    • 2015
  • In recent years in the field of robotics, various methods have been developed to create an intimate relationship between people and robots. These methods include speech, vision, and biometrics recognition as well as gesture-based interaction. These recognition technologies are used in various wearable devices, smartphones and other electric devices for convenience. Among these technologies, gesture recognition is the most commonly used and appropriate technology for wearable devices. Gesture recognition can be classified as contact or noncontact gesture recognition. This paper proposes contact gesture recognition with IMU and EMG sensors by using the hidden Markov model (HMM) twice. Several simple behaviors make main gestures through the one-stage HMM. It is equal to the Hidden Markov model process, which is well known for pattern recognition. Additionally, the sequence of the main gestures, which comes from the one-stage HMM, creates some higher-order gestures through the two-stage HMM. In this way, more natural and intelligent gestures can be implemented through simple gestures. This advanced process can play a larger role in gesture recognition-based UX for many wearable and smart devices.

Human Robot Interaction via Wearable Robot

  • Kobayashi, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.49.5-49
    • /
    • 2002
  • $\textbullet$ Developing "muscle shit" providing muscular support $\textbullet$ Based on a new concept: wearable robot $\textbullet$ Be applicable directly to human $\textbullet$ McKibben artificial muscles are sewn into a garment

  • PDF

Development of Soft Wearable Robot for Assisting Supination and Pronation of Forearm (전완의 회외 및 회내를 보조하는 유연한 착용형 로봇 개발)

  • Kyu Bum Kim;Jihun Park;Kyu-Jin Cho
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.359-366
    • /
    • 2023
  • In order to fully utilize the functions of the hand which is the end effector of the upper limb, other parts of the upper limb have to perform their own roles. Among them, the pronation and supination of the forearm, which allows the hand to rotate along the longitudinal direction of the forearm, play an important role in activities of daily living. In this paper, a soft wearable robot that assists the pronation and supination of the forearm for individuals with weakened or lost upper limb function is proposed. The wearable robot consists of an anchoring part with polymer (wrist strap, elbow strap), a tendon with a belt and wire, and an actuation module. It was developed based on the requirements with respect to friction of anchoring part, forearm compression, and friction of the tendon. It was confirmed that these requirements were satisfied through literature review and experiments. Since all components exist within the forearm when worn, it is expected to be easy to combine with the already developed soft wearable robots for the hand, wrist, elbow, and shoulder.

Twisted String-based Upper Limb Exoskeleton (줄꼬임에 기반한 상지 외골격 로봇)

  • Lee, Seung-Jun;Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.960-966
    • /
    • 2016
  • This paper proposes a new concept of a soft and wearable upper-limb exoskeleton. A novel actuation principle, called the twisted string actuation principle, is implemented to make it lightweight, soft, and therefore easily wearable. Its power transmission mechanism and harness are designed to be soft and wearable, yet have enough control accuracy for rehabilitation. In addition to force transmission optimization, a speed enlargement mechanism is newly introduced in order to increase the contraction speed of the twisted string actuation mechanism by sacrificing the unnecessarily large gear reduction ratio of the twisted string mechanism. A prototype has been tested for mirroring therapy, and the feasibility of the proposed mechanism has been shown through a sufficiently accurate tracking performance.

A Study of The Wearable Input Device Based on Human Hand-Motions Recognition

  • Daehui Won;Lee, Hogil;Kim, Jinyoung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.51.5-51
    • /
    • 2002
  • In this paper, we propose and developed a keyglove using the touch-typing method as new solutions to the problem of text input into the mobile computing devices. This device recognizes that character is typed in though the hand's movements analysis and requires no additional space on a person's desktop or work surface, and can be easily used with computers of any size, even the smallest mobile computer, and is designed as an input device for wearable computers and virtual environment. The concept of the wearable input device based on human hand-molies recognition.

  • PDF

A Study of wearable robot styling for the support a industrial work force assistance (산업용 착용식 근력 증강 로봇 스타일링 연구)

  • Stone, Daniel;Kim, Hyung Joo;Bae, Hyunki
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.2
    • /
    • pp.79-95
    • /
    • 2014
  • We are at the dawn of a new era in which the importance of robots will be evaluated on the basis of not only their functions but also their appearance. Therefore, those manufacturers who continue to develop robots that only offer convenience and do not keep up with the emerging trends might be weeded out from the robot market in the future. This study empirically tested and verified the ways in which the commercial value of wearable robots is enhanced when they are stylishly attired, using user and work environment analysis. For the purpose of this study, a styling development project for wearable robots was undertaken and applied to the actual development of these robots. Based on the results of the study, a new styling process for such robots was established. Those manufacturers who will realize the importance of styling of robots and develop robots using this process shall become the trendsetters in designing stylized robots and lead the robot industry in the future.

Wearable Tactile Display Based on Soft Actuator (유연한 구동기를 이용한 착용 가능한 촉각 제시 장치 개발)

  • Koo, Ig-Mo;Jung, Kwang-Mok;Park, Jong-Kil;Koo, Ja-Choon;Lee, Young-Kwan;Nam, Jae-Do;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.89-101
    • /
    • 2006
  • Tactile sensation is one of the most important sensory functions for human perception of objects. Recently, there have been many technical challenges in the field of tactile display as well as tactile sensing. In this paper, we propose an innovative tactile display device based on soft actuator technology with ElectroActive Polymer(EAP). This device offers advantageous features over existing devices with respect to intrinsic flexibility, softness, ease of fabrication and miniaturization, high power density, and cost effectiveness. In particular, it can be adapted to various geometric configurations because it possesses structural flexibility, so it can be worn on any part of the human body such as finger, palm, and arm etc. It can be extensively applied as a wearable tactile display, a Braille device for the visually disabled, and a human interface in the future. A new design of the flexible actuator is proposed and its basic operational principles are discussed. In addition, a wearable tactile display device with $4{\times}5$ actuator array(20 actuator cells) is developed and its effectiveness is confirmed.

  • PDF

Muscle Stiffness based Intent Recognition Method for Controlling Wearable Robot (착용형 로봇을 제어하기 위한 근경도 기반의 의도 인식 방법)

  • Yuna Choi;Junsik Kim;Daehun Lee;Youngjin Choi
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.496-504
    • /
    • 2023
  • This paper recognizes the motion intention of the wearer using a muscle stiffness sensor and proposes a control system for a wearable robot based on this. The proposed system recognizes the onset time of the motion using sensor data, determines the assistance mode, and provides assistive torque to the hip flexion/extension motion of the wearer through the generated reference trajectory according to the determined mode. The onset time of motion was detected using the CUSUM algorithm from the muscle stiffness sensor, and by comparing the detection results of the onset time with the EMG sensor and IMU, it verified its applicability as an input device for recognizing the intention of the wearer before motion. In addition, the stability of the proposed method was confirmed by comparing the results detected according to the walking speed of two subjects (1 male and 1 female). Based on these results, the assistance mode (gait assistance mode and muscle strengthening mode) was determined based on the detection results of onset time, and a reference trajectory was generated through cubic spline interpolation according to the determined assistance mode. And, the practicality of the proposed system was also confirmed by applying it to an actual wearable robot.

Rapidly Spreading Logistics Robot Applications (급속 확산되는 물류현장의 로봇적용 사례)

  • Kwak, Kyungmin;Park, Buhm;Go, Eunji;Yoon, Chuljoo;Kim, Kyunghoon
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.387-396
    • /
    • 2022
  • Logistics industry still heavily relies on human labor in many field processes. However, robot applications in logistics are rapidly increasing, encouraged by technological progresses in robotics and cheaper robot solutions from competition between robot suppliers. Effectiveness of logistics automation are higher productivity for cost reduction and increased process capabilities for better profit, which is witnessed in many fields of logistics industry. In this paper, differences in logistics services - contract logistics, parcel, and fulfillment - are addressed, and characteristics and issues in application of various kinds of logistics robots such as AGV, AMR, ASRS, box/piece handling robots and robotic wearable devices are discussed. The advantages from flexibility and scalability of logistics automation by robots will benefit the future logistics business.