• Title/Summary/Keyword: wearable energy device

Search Result 62, Processing Time 0.029 seconds

An multiple energy harvester with an improved Energy Harvesting platform for Self-powered Wearable Device (웨어러블 서비스를 위한 다중 발전소자 기반 에너지 하베스터 플랫폼 구현)

  • Park, Hyun-Moon;Kim, Byung-Soo;Kim, Dong-Sun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.153-162
    • /
    • 2018
  • The importance of energy harvesting technique is increasing due to the elevated level of demand for sustainable power sources for wearable device applications. In this study, we developed an Energy Harvesting wearable Platform(EH-P) architecture which is used in the design of a multi-energy source based on TENG. The proposed switching circuit produces power with higher current at lower voltage from energy harvesting sources with lower current at higher voltage. This can powers microcontrollers for a short period of time by using PV and TENG complementarily placed under hard conditions for the sources such as indoors. As a result, the whole interface circuit is completely self-powered with this makes it possible to run of sensing on a Wearable device platform. It was possible to increase the wearable device life time by supplying more than 29% of the power consumption to wearable devices. The results presented in this paper show the potential of multi-energy harvesting platform for use in wearable harvesting applications, provide a means of choosing the energy harvesting source.

Skin-interfaced Wearable Biosensors: A Mini-Review

  • Kim, Taehwan;Park, Inkyu
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.71-78
    • /
    • 2022
  • Wearable devices have the potential to revolutionize future medical diagnostics and personal healthcare. The integration of biosensors into scalable form factors allow continuous and noninvasive monitoring of key biomarkers and various physiological indicators. However, conventional wearable devices have critical limitations owing to their rigid and obtrusive interfaces. Recent developments in functional biocompatible materials, micro/nanofabrication methods, multimodal sensor mechanisms, and device integration technologies have provided the foundation for novel skin-interfaced bioelectronics for advanced and user-friendly wearable devices. Nonetheless, it is a great challenge to satisfy a wide range of design parameters in fabricating an authentic skin-interfaced device while maintaining its edge over conventional devices. This review highlights recent advances in skin-compatible materials, biosensor performance, and energy-harvesting methods that shed light on the future of wearable devices for digital health and personalized medicine.

Flexible Thermoelectric Device Using Thick Films for Energy Harvesting from the Human Body

  • Cho, Han Ki;Kim, Da Hye;Sin, Hye Sun;Cho, Churl-Hee;Han, Seungwoo
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.518-524
    • /
    • 2017
  • A flexible thermoelectric device using body heat has drawn attention as a power source for wearable devices. In this study, thermoelectric thick films were fabricated by cold pressing method using p-type antimony telluride and n-type bismuth telluride powders in accordance with specific loads. Thermoelectric thick films were denser and improved the electrical and thermoelectric properties while increasing the load of the cold pressing. The thickness of the specimen can be controlled by the amount of material; specimens were approximately 700 um in thickness. Flexible thermoelectric devices were manufactured by using the thermoelectric thick films on PI (Polyimide) substrate. The process is cheap, efficient, easy and scalable. Evaluation of power generation performance and flexibility on the fabricated flexible thermoelectric device was carried out. The flexible thermoelectric device has great flexibility and good performance and can be applied to wearable electronics as a power source.

A Study on the Design of a Wearable Solar Energy Harvesting Device Based on Outdoor Activities (아웃도어 활동기반 웨어러블 광에너지 하베스팅 장치 디자인에 관한 연구)

  • Lee, Eunyoung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.6
    • /
    • pp.1224-1239
    • /
    • 2020
  • This study develops a wearable solar energy harvesting device that absorbs solar energy to generate and store power which can be used during outdoor activities by users even after dark. For this study, a prototype hat for outdoor activities at night was developed after the design of a solar energy harvesting generation, storage, and delivery system was designed that could store energy to light up LEDs. First, the main control board of the system was designed to integrate the charging function, the darkness detection circuit, the battery voltage sensing circuit, and the LED driving circuit in order to reduce bulkiness and minimize the connection structure. It was designed to increase convenience. Second, the system was designed as a wearable fashion product that connected each part with fiber bands and manufacturing it so as to be detachable from the hat. Third, charging and LED operation tests show that the battery is fully charged after 5 hours even in winter when the illuminance value is low. In addition, the LED operation experiment verified the effectiveness of a buffered system that could operate the LEDs for about 3 hours at night.

A Development of P-EH(Practical Energy Harvester) Platform for Non-Linear Energy Harvesting Environment in Wearable Device (비연속적 에너지 발전 환경을 고려한 웨어러블 기반 P-EH 플랫폼 개발)

  • Park, Hyun-Moon;Kim, Byung-Soo;Kim, Dong-Sun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1093-1100
    • /
    • 2018
  • Fast progress in miniaturization and reducing power consumption of semiconductors for wearable devices makes it possible to develop extremely small wearable systems for various application services. This results recent wearable applications to be powered from extremely low-power energy harvesters based on solar, piezo, and TENG sources. In most cases, the harvesters generate power in non-linear manner. Therefore, we implemented and experimented the device platforms to utilize natural frequency of around 3Hz. We also designed two-stage power storages and high efficiency conversion platform to consider such non-linear power harvesting sources. The experiment showed power generation of about 4.67mW/min from these non-linear sources with provision of stable energy storages.

Design of Reassembly Unit Modular Wearable Device (단위 모듈 기반의 재조립 가능한 웨어러블 디바이스 구조 설계)

  • Lee, Geo-Yun;Kang, Soon-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.3
    • /
    • pp.338-346
    • /
    • 2016
  • Wearable Device has various constraint about battery power consumption, size, weight, etc, because the devices is worn and operated by person and provide services. So, if a device includes too many functions, it dose not satisfies the constraint and lose price competitiveness due to become expensive. Therefore we suggest that make reassembly Unit Modular Device witch has common used functions in wearable devices and user can receive various services to reassemble Unit Modules. It is comprised of frames and modules. Each module has various functions. Each frames help module to communicate each modules. To realize this device, we design to guarantee each services to use necessary modules, to give priority to modules depending on the important of the task, to set that does not use to low energy mode.

Plasticized Poly(Vinyl Chloride)-Acetyl Tributyl Citrate Gels Based Triboelectric Nanogenerator (아세틸 트라이뷰틸 구연산 가소제를 이용한 PVC 겔 기반 마찰전기 나노발전기 개발 )

  • Dohye Park;Hyosik Park;Ju-Hyuck Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.93-97
    • /
    • 2023
  • A triboelectric nanogenerator (TENG) is a device that converts mechanical energy into electrical energy, and has been considered as a substitute for continuous power supply due to its high performance, simple structure and eco-friendliness. Recently, it is important to develop a TENG using a non-toxic material in order to use it as a power source for wearable, attachable, and body-embeddable electronics. Here, we developed a human friendly TENG using polyvinyl chloride (PVC) gel containing acetyl tributyl citrate (ATBC), a non-toxic plasticizer. PVC gels were fabricated using various ratios of PVC and ATBC, and optimized by investigating dielectric properties, surface potential, output performance, and durability. The PVC gel based TENG generates output signals of 73 V and 4.3 μA, i.e., a 5-fold enhancement in the output power compared to pristine PVC-based TENG. In addition, the PVC gel can be stretched over 500% of strain. This study is expected to be helpful in the future development of non-toxic wearable TENG.

Development of Optical Strain Sensor with Nanostructures on a Poly-dimethylsiloxane (PDMS) Substrate (Poly-dimethylsiloxane (PDMS) 기판 위에 형성된 나노구조를 이용한 시각 인장센서의 개발)

  • Kim, Geon Hwee;Woo, Hyeonsu;Lim, Geunbae;An, Taechang
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.392-396
    • /
    • 2018
  • Structural color has many advantages over pigment based color. In recent years, researches are being conducted to apply these advantages to applications such as wearable devices. In this study, strain sensor, a kind of wearable device, was developed using structural color. The use of structural color has the advantage of not using energy and complex measuring equipment to measure strain rate. Wrinkle structure was fabricated on the surface of Poly-dimethylsiloxane (PDMS) and used it as a sensor which color changes according to the applied strain. In addition, a transmittance-changing sensor was developed and fabricated by synthesizing additional glass nanoparticles. Furthermore, a strain sensor was developed that is largely transparent at the target strain and opaque otherwise.

Synthesis and characterization of amorphous NiWO4 nanostructures

  • Nagaraju, Goli;Cha, Sung Min;Yu, Jae Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.392.1-392.1
    • /
    • 2016
  • Nowadays, research interest in developing the wearable devices are growing remarkably. Portable consumer electronic systems are becoming lightweight, flexible and even wearable. In fact, wearable electronics require energy storage device with thin, foldable, stretchable and conformable properties. Accordingly, developing the flexible energy storage devices with desirable abilities has become the main focus of research area. Among various energy storage devices, supercapacitors have been considered as an attractive next generation energy storage device owing to their advantageous properties of high power density, rapid charge-discharge rate, long-cycle life and high safety. The energy being stored in pseudocapacitors is relatively higher compared to the electrochemical double-layer capacitors, which is due to the continuous redox reactions generated in the electrode materials of pseudocapacitors. Generally, transition metal oxides/hydroxide (such as $Co_3O_4$, $Ni(OH)_2$, $NiFe_2O_4$, $MnO_2$, $CoWO_4$, $NiWO_4$, etc.) with controlled nanostructures (NSs) are used as electrode materials to improve energy storage properties in pseudocapacitors. Therefore, different growth methods have been used to synthesize these NSs. Of various growth methods, electrochemical deposition is considered to be a simple and low-cost method to facilely integrate the various NSs on conductive electrodes. Herein, we synthesized amorphous $NiWO_4$ NSs on cost-effective conductive textiles by a facile electrochemical deposition. The as-grown amorphous $NiWO_4$ NSs served as a flexible and efficient electrode for energy storage applications.

  • PDF

A Study on the Ultra-Small Pendulum Generator Applicable to Wearable IT Device (웨어러블 IT 기기에 적용 가능한 초소형 진자 발전기에 관한 연구)

  • Jee, In-Ho;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.139-143
    • /
    • 2022
  • In this study, Among the electromagnetic induction power generation (EMG) techniques, the design specifications of the RFPM were set, and a suitable test prototype was manufactured through finite element analysis (FEM, 2D) required for characteristic calculation. In addition, a dedicated testing device (Dynamo-Tester) was designed and manufactured to measure and analyze the test prototype. The test product was measured with a test device and the result is analyzed to suggest a method that can be applied by generating as much output power as possible to charge the battery of the wearable IT device using actual kinetic energy of the human body. As a result of the test, the output power was 1.679W and the efficiency was 79.31% under the conditions of rotation speed of 780.9rpm, torque of 0.264kgf/cm, and load current of 73.6~73.9mA. Therefore, it was analyzed that it was possible to charge the wearable device with the output of the ultra-small RFPM pendulum generator.