• Title/Summary/Keyword: wear-corrosion

Search Result 408, Processing Time 0.023 seconds

The Performance Test on Me-DLC Films for Improving Wear Resistance of LM-Guide (LM 가이드의 내마모성 향상을 위한 Me-DLC 코팅박막의 성능평가)

  • Kang, Eun-Goo;Lee, Dong-Yoon;Kim, Seong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.409-416
    • /
    • 2012
  • Recently, surface modification technology is of importance to improve the wear resistance and the corrosive resistance for high accurate mechanical parts such as LM guide, Ball Screw and Roller Bearing etc., Those has generally featured on rolling contact mechanism to improve not only the wear and the friction, but also the accuracy and the corrosion performances. For surface modifications of high accurate mechanical parts, normally thermal spray, PVD, CVD and E.P. processes have been used with many materials such as DLC, raydent, W, Ni, Ti etc. Diamondlike carbon (DLC) films possess a combination of attractive properties and have been largely employed to modify the tribological behaviors such as friction, wear, corrosion, fretting fatigue, biocompatibility, etc. However, for rolling contact mechanism mechanical parts DLC films are needed to study for commercial benefit. Rolling contact mechanism has features on effects of cyclic motions and stresses, and also not simply sliding motions. The papers focused on the performance test of wear and corrosive resistance according to Me-DLC film thickness. And also, its thickness effect of wear analysis was carried out through the simulation of the maximum shear stress under the rolling contact surface. As the results, Me-DLC films have more potential to improve the wear resistance for high precision mechanical parts than raydent films.

Fretting Wear and Friction of lnconel 690 for Steam Generator Tube in Elevated Temperature Water

  • Lee, Young-Ze;Lim, Min-Kyu;Oh, Se-Doo
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.49-53
    • /
    • 2002
  • Inconel 690 for nuclear steam generator tube has more chromium than the conventionally used Inconel 600 in order to increase the corrosion resistance. TD evaluate the tribological characteristics under fretting condition the fretting tests as well as sliding tests were carried out in elevated temperature water environment. Fretting tests of the cross-cylinder type were done under various vibrating amplitudes and applied normal loads in order to measure the friction forces and wear volumes. Also, the conventional sliding tests of pin-en-disk type were carried out to compare the test results. In fretting, the friction was very sensitive to the load and the amplitude. The friction coefficient decreased with increasing load and decreasing amplitude. Also, the wear of Inconel 690 can be predictable using the work rate model. Depending on normal loads and vibrating amplitudes, distinctively different wear mechanisms and of ten drastically different wear rates can occur. It was fecund that the fretting wear coefficients in water were increased as increasing the temperature of water.

A study on the erosive wear of spray tip nozzle by epoxy primer paint impingement and the spraying characteristics (에폭시 프라이머 도료의 에어리스 스프레이 분사 시간에 따른 팁 노즐 침식마모경향과 분사특성 연구)

  • Kim, Jinuk;Cho, Yeon-Ho;Cheon, Je-Il;Han, Myoung-Soo
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.59-63
    • /
    • 2015
  • Airless spray which is widely used for painting to ship blocks and hull sides is the coating method for attaching atomized paint material to the substrate using spray tip nozzle with compressed air. When the paint material which has high solid contents such as epoxy primer paint is atomized by passing through spray tip nozzle with high pressure, the nozzle composed of tungsten carbide(WC) undergoes the erosive wear, leading to widening of nozzle hole. The deformation of nozzle hole induces improper spray pattern and coating failures such as finger pattern and sagging because the conditions of spray pump pressure and paint flow rate for developing full spray pattern are changed. In this study, an appropriate replacement cycle of spray tip was predicted by measuring the erosive wear tendency as increasing the spraying time of epoxy primer paint.

Implementation of a Small Size Electric Automatic Lubrication System for Heavy Commercial Vehicle (대형상용차량을 위한 소형전기식 윤활유 자동 공급시스템 구현)

  • Kim, Man Ho;Lee, Sang Hyeop;Lee, Suk;Lee, Kyung Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1041-1049
    • /
    • 2013
  • One of the causes of malfunction of commercial vehicle is corrosion or wear. In order to prevent corrosion and wear, lubricants have to be supplied periodically. However, the period of lubrication usually depends on operator's judgment. If the period is too short, excess lubricant will cause pollution and unnecessary expenses, where as long periodic supply of lubricant might cause wear, damage and eventual breakdown. Therefore, an automatic lubrication system with predetermined interval will reduce the excessive supply of lubricating oil and prevent wear and damage. This thesis presents an automatic lubrication system which consists of a lubricant pump and an embedded controller. An automatic lubrication operating algorithm is used to operate the lubricant pump and feedback the pressure status of the system using pressure sensors. The developed system shows an efficient periodic supply of lubricant.

Effect of Atmosphere on Corrosive Wear of Alloy Cast Iron for Cylinder Liner of Large Ship Engine (선박 엔진의 실린더 라이너용 합금주철의 부식마멸에 미치는 분위기의 영향)

  • Koo, Hyunho;Cho, Yonsang;Cho, Hwayoung;Park, Heungsik
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.233-239
    • /
    • 2012
  • The engine of a large ship operates under wet conditions using a fuel such as bunker C oil, which includes sulfur and many impurities. A cylinder liner made of cast iron is very susceptible to damage such as scuffing on the surface. This scuffing can reliably be attributed to the destruction of the oil film and the corrosion wear caused by water and sulfur included in the fuel, along with abrasion impurities and poor lubricants. In this study, a reciprocating friction and wear test was carried out with a cast iron specimen, which was used to simulate an engine cylinder in a corrosive environment. Base-oil and stirred oil containing distilled water, NaCl solution, and dilute sulfuric acid were used as lubricants. The friction surface was analyzed using a microscope and EDAX, and the friction coefficient was measured using a load-cell under each experimental condition. We then attempted to investigate the damage to the cylinder liner using the results.

Properties of the Gold and Palladium-Nickel Alloy Plated Layers on Electrical Contact Materials (접점상에 입힌 Au 및 Pd-Ni 합금도금층의 특성)

  • 백철승;장현구;김회정
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.3
    • /
    • pp.107-116
    • /
    • 1992
  • The optimum thickness of Pd-Ni plated layers used as an electrical contact film was investigated by evaluating mechanical, thermal and environmental characteristics. The variations of morphologies and chemical compositions were studied by using SEM, EDS and ESCA. As a result of wear test, the wear resistance behavior of the gold plated layers was not changed with the sliding velocity changes. The palladium-nickel plated layer showed better wear resistance than the gold plated layer at low sliding velocity, but it showed poor wear resistance at high sliding velocity. Under the thermal condition of $400^{\circ}C$ in air, the gold thickness of $2\mu\textrm{m}$ without underplate on phosphorous bronze formed copper oxide on the surface layer by rapid diffusion of copper whereas the gold thickness of $0.8\mu\textrm{m}$ deposited on nickel and palladium-nickel underplate was stable at $400^{\circ}C$. Under the sulfur dioxide environments, the gold thickness of $0.3\mu\textrm{m}$ deposited on the nickel thickness of$ 3\mu\textrm{m}$ and the palladium-nickel thickness of $2\mu\textrm{m}$ underplate was more corrosion-resistant than the gold thickness of $2\mu\textrm{m}$ without underplate on phosphorous bronze. Under the nitric acid vapor environment, corrosion resistance of the gold film was superior to an equivalent thickness of the palladium-nickel film.

  • PDF

Fretting Wear Evaluation of TiAIN Coated Nuclear Fuel Rod Cladding Materials (TiAIN 코팅한 핵연료봉 피복재의 프레팅 마멸 평가)

  • Kim, Tae-Hyeong;Kim, Seok-Sam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.88-95
    • /
    • 2002
  • Fretting of fuel rod cladding material, Zircaloy-4 Tube, in PWR nuclear power plants must be reduced and avoided. Nowadays the introduction of surface treatments or coatings is expected to bean ideal solution to fretting damage since fretting is closely related to wear, corrosion and fatigue. Therefore, in this study the fretting wear experiment was peformed using TiAIN coated Zircaloy-4 tube as the fuel rod cladding and uncoated Zircaioy-4 tube as one of grids, especially concentrating on the sliding component. Fretting wear resistance of TiAIN coated Zircaloy-4 tubes was improved compared with that of TiN coated tubes and uncoated tubes and the fretting wear mechanisms were delamination and plastic flow following by brittle fracture at lower slip amplitude but severe oxidation and spallation of oxidative layer at higher slip amplitude.

  • PDF

Nanocomposite Coating with TiAlN and Amorphous Carbon Phases Synthesized by Reactive Magnetron Sputtering

  • Kim, Bom Sok;Kim, Dong Jun;La, Joung Hyun;Lee, Sang Yong;Lee, Sang Yul
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.801-808
    • /
    • 2012
  • TiAlCN coatings with various C contents were synthesized by unbalanced magnetron sputtering. The characteristics, the crystalline structure, surface morphology, hardness, and friction coefficient of the coatings as a function of the C content were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), a microhardness tester, and a wear test. In addition, their corrosion behaviors in a deaerated 3.5 wt% NaCl solution at $40^{\circ}C$ were investigated by potentiodynamic polarization tests. The results indicated that the $Ti_{14.9}Al_{15.5}C_{30.7}N_{38.9}$ coating had the highest hardness, elastic modulus, and a plastic deformation resistance of 39 GPa, 359 GPa, and 0.55, respectively, and it also had the lowest friction coefficient of approximately 0.26. Comparative evaluation of the TiAlCN coatings indicated that a wide range of coating properties, especially coating hardness, could be obtained by the synthesis methods and processing variables. The microhardness of the coatings was much higher than that from previously reported coating using similar magnetron sputtering processes. It was almost as high as the microhardness measured from the TiAlCN coatings (~41 GPa) synthesized using an arc ion plating process. The potentiodynamic test showed that the corrosion resistance of the TiAlCN coatings was significantly better than the TiAlN coatings, and their corrosion current density ($i_{corr}$), corrosion potentials ($E_{corr}$) and corrosion rate decreased with an increasing C content in the coatings. The much denser microstructure of the coatings due to the increased amount of amorphous phase with increasing C contents in the coatings could result in the the improved corrosion resistance of the coatings.

THINNED PIPE MANAGEMENT PROGRAM OF KOREAN NUCLEAR POWER PLANTS

  • Lee, S.H.;Lee, Y.S.;Park, S.K.;Lee, J.G.
    • Corrosion Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Local wall thinning and integrity degradation caused by several mechanisms, such as flow accelerated corrosion (FAC), cavitation, flashing and/or liquid drop impingements, are a main concern in carbon steel piping systems of nuclear power plant in terms of safety and operability. Thinned pipe management program (TPMP) had been developed and optimized to reduce the possibility of unplanned shutdown and/or power reduction due to pipe failure caused by wall thinning in the secondary side piping system. This program also consists of several technical elements such as prediction of wear rate for each component, prioritization of components for inspection, thickness measurement, calculation of actual wear and wear rate for each component. Decision making is associated with replacement or continuous service for thinned pipe components. Establishment of long-term strategy based on diagnosis of plant condition regarding overall wall thinning is also essential part of the program. Prediction models of wall thinning caused by FAC had been established for 24 operating nuclear plants. Long term strategies to manage the thinned pipe component were prepared and applied to each unit, which was reflecting plant specific design, operation, and inspection history, so that the structural integrity of piping system can be maintained. An alternative integrity assessment criterion and a computer program for thinned piping items were developed for the first time in the world, which was directly applicable to the secondary piping system of nuclear power plant. The thinned pipe management program is applied to all domestic nuclear power plants as a standard procedure form so that it contributes to preventing an accident caused by FAC.

Effect of Powder Preheating Temperature on the Properties of Cu based Amorphous Coatings by Cold Spray Deposition (저온분사로 제조된 Cu계 비정질 코팅층 특성에 미치는 분말 예열 온도의 영향)

  • Cho, Jin-Hyeon;Park, Dong-Yong;Lee, Jin-Kyu;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.728-733
    • /
    • 2009
  • Cu based amorphous ($Cu_{54}Zr_{22}Ti_{18}Ni_{6}$) powders were deposited onto Al 6061 substrates by cold spray process with different powder preheating temperatures (below glass transition temperature: $350^{\circ}C$, near glass transition temperature: $430^{\circ}C$ and near crystallization temperature: $500^{\circ}C$). The microstructure and macroscopic properties (hardness, wear and corrosion) of Cu based amorphous coating layers were also investigated. X-ray diffraction results showed that cold sprayed Cu based amorphous coating layers of $300{\sim}350{\mu}m$ thickness could be well manufactured regardless of powder preheating temperature. Porosity measurements revealed that the coating layers of $430^{\circ}C$ and $500^{\circ}C$ preheating temperature conditions had lower porosity contents (0.88%, 0.93%) than that of the $350^{\circ}C$ preheating condition (4.87%). Hardness was measured as 374.8 Hv ($350^{\circ}C$), 436.3 Hv ($430^{\circ}C$) and 455.4 Hv ($500^{\circ}C$) for the Cu based amorphous coating layers, respectively. The results of the suga test for the wear resistance property also corresponded well to the hardness results. The critical anodic current density ($i_{c}$) according to powder preheating temperature conditions of $430^{\circ}C$, $500^{\circ}C$ was lower than that of the sample preheated at $350^{\circ}C$, respectively. The higher hardness, wear and corrosion resistances of the preheating conditions of near $T_{g}$ and $T_{x}$, compared to the properties of below $T_{g}$, could be well explained by the lower porosity of coating layer.